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NUMERICAL STUDY OF STEADY AND UNSTEADY
CANARD-WING-BODY AERODYNAMICS

Eugene L. Tu
Ames Research Center

SUMMARY

The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic
of continued interest and research. In addition to providing maneuver control and trim, the influence
of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag.
In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other
dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate
prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards,
the unsteady aerodynamic performance associated with the canard-wing interaction is of particular
interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-
wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and
vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield
are further increased.

The development and integration of advanced computational technologies provide for the time-
accurate Navier Stokes simulations of the steady and unsteady canard-wing-body flowfields. Simula-
tions are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of
angles of attack. For the static configurations, the effects of canard positioning and fixed deflection an-
gles on aerodynamic performance and canard-wing vortex interactions are considered. For non-static
configurations, the analyses of the canard-wing-body flowfield includes the unsteady aerodynamics
associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady
flowfield associated with moving canards, which are typically used as primary control surfaces. are
considered as well. The steady and unsteady effects of the canard on surface pressures, integrated
forces and moments. and canard-wing vortex interaction are presented in detail. including the effects
of the canard on the static and dvnamic stability characteristics.

The current study provides an understanding of the steady and unsteady canard-wing-body flow-
field. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the
detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to
accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled
fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.






Chapter 1

Introduction

1.1 Motivation

Since the Wright Brothers first introduced the canard configuration almost a century ago, the benefits
of canards over the now more conventional tailplane configurations have been researched and debated
extensively. In particular, for the past 30 years, the use of canards in many advanced aircraft for control
and improved aerodynamic performance has been the topic of continued research. The influence of
canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag.
There are also unique dynamic performance characteristics for canard-configured aircraft coupled with
the capability of present-day automatic control systems. The reduced or even negative static stability
of canard configurations can lead to improved aircraft agility and maneuverability.

There are a variety of aircraft which utilize canards to enhance aerodynamic performance and
controllability. Aircraft flying today can be found with canards which are fixed or movable, located
at various longitudinal and vertical positions, and coincident or deflected with respect to the wing.
For example, the X-31 aircraft has a “no-load” long-coupled canard which deflects between 420 and
~70 deg for high angle of attack pitch recovery control (ref. 1). Otherwise, during normal flight, the
X-31's canard is “free-floating” and deflects to maintain minimal aerodynamic loads.

Close-coupled canards, by definition, have a more significant effect on the canard-wing aerodynamic
interaction and, consequently, the aerodynamic performance of the aircraft. The NASA X-29, SAAB
Viggen and SAAB Gripen are three examples of fully integrated close-coupled canard configurations.
The X-29 has a forward-swept wing and a movable close-coupled canard which is the primary pitch
control surface as well as an integral component in the active control system (ref. 2). The SAAB Viggen
has a close-coupled fixed canard for high performance aerodynamics while its successor, the Gripen,
utilizes movable close-coupled canards to obtain maximum lift in maneuvering, maximum lift-to-drag
ratio in cruise, and even nose-down pitching moment during short-field landing roll-out (ref. 3).

Improved performance of close-coupled canard configurations is usually the direct result of the
aerodynamic interaction between the canard and wing. However, depending upon geometry and flow
parameters, this interaction can be either favorable or unfavorable. In many canard-configured aircraft.
including some of those listed above, the main benefits of the canards are realized during maneuver
or other dynamic conditions. Therefore, the detailed study of canards as aerodynamic performance or
primary control surfaces requires the accurate prediction of both the steady and unsteady aerodynamics
of such configurations. Proper utilization of canards requires the detailed and complete understanding
of the canard’s steady and unsteady influence on the flow structure about the wing.



1.2 Background

At moderate angles of attack. for aft-swept lifting surfaces with sharp leading edges, the flow can
separate at the leading edge due to the adverse pressure gradient on the leeward side. Figures 1.1 and
1.2 show a perspective and crossflow-plane schematic, respectively, of the flow structure over a typical
canard or wing with leading-edge separation. A free vortex sheet is formed which rolls up over the
upper surfaces of the canard or wing. If the vortex is strong enough, secondary (Ss) and, in some cases.
tertiary (S3) separations may result.

The flow structure of highly-swept or delta canard-wing configurations is characterized by a canard-
downwash which modifies the wing flowfield and an interaction between the canard and wing vortex
systems. A schematic of a typical canard-wing vortex interaction is given in figure 1.3. In the absence
of vortex breakdown over the canard, the canard vortex convects downstream and modifies the wing
flow structure through its induced flow and interaction with the wing vortex. The downwash of the
canard modifies the flowfield of the wing within the canard-tip span-line by decreasing the effective
angle of attack of the wing. Beyond the canard tip, upwash from the canard increases the wing’s
effective angle of attack. The downwash and upwash effects of the canard significantly influence the
formation of the wing leading-edge vortex. The canard downwash can weaken or delay the formation
of the wing vortex, thus affecting its position over the wing surface.

The effect of changing the position of the canard or deflecting the canard can drastically alter
this canard-wing aerodynamic interaction. For example, a canard positioned with a vertical offset
from the wing (high- or low-canard) will have varying locations of the canard wake and leading-edge
vortex relative to the wing, both of which can significantly change the canard-wing flowfield from
that of the coplanar canard case. For the canard with a positive deflection angle, the stronger canard
downwash and modified canard trailing edge location will also change the wing flowfield relative to that
of the coplanar canard case. All of these flowfield changes can potentially affect both the aerodynamic
performance as well as the stability and trim characteristics of a configuration, and need to be fully
understood.

Additional flow features contributing to the complex flow structure of typical canard configurations
include secondary, trailing-edge, and tip vortices, as well as regions of shock-induced or boundary-layver
separation. A strong primary vortex often causes the formation of a strong secondary vortex which,
from the resultant induced velocities, will significantly affect the surface pressures near the canard
or wing leading edge. Furthermore, trailing-edge and tip vortices can interact with the leading-edge
vortex as it convects downstream. Boundary-layer separation due to high angles-of-attack or induced
by a strong recovery shock is also influenced by the presence of these vortices.

In general, the characteristics of static canard configurations are adequately represented by steady-
state aerodynamics. At higher angles of attack, some of the conditions which may result in unsteady
aerodynamics include large regions of separated flow and vortex breakdown. For a configuration un-
dergoing body motion with a fixed or moving canard, the unsteady effects can be quite significant. In
particular, the downwash of the canard and the interaction between the canard and wing vortices can
exhibit highly non-linear unsteady aerodynamic characteristics.

1.3 Previous Studies

The use of canards for improved performance has been supported by numerous experimental studies as
well as some recent computational studies. An early experimental study by Behrbohm (ref. 4) indicated
the potential for improved aerodynamic characteristics of short or close-coupled canard configurations



based on the canard-wing interaction. Other experimental studies by Lacey and Chorney (ref. 5),
McKinney and Dollyhigh (ref. 6), and Dollyhigh (ref. 7) showed the canard’s potential for obtaining
increased lift and reduced drag.

Studies by Gloss and McKinney (ref. 8), and Gloss (refs. 9-11) provided further insight into the
effects of canard geometry and positioning on aerodynamic loading. Experimental studies by Gloss
et al. (ref. 12). and Dollyhigh (ref. 7) examined the effects of canard size, position and deflection in the
subsonic and supersonic regimes, respectively. In particular, the studies by Gloss et al. (refs. 10 and 13)
identified unfavorable characteristics for the low-canard configuration. Substantial loss of lift due to the
interaction between the low-canard wake and the wing was experimentally measured. However, due to
the nature of these studies, which only investigated aerodynamic performance parameters, insufficient
data were obtained to completely describe the canard-wing flowfield.

Lacey (ref. 14) conducted an extensive four-volume experimental study on the effects of canard
geometry, position and deflection on aerodynamic loads in the subsonic to supersonic regimes. Other
studies (refs. 15 and 16) investigated the effects of canard and control surface deflections on more
realistic canard configurations while references 7, 11, and 12 provided detailed studies on generic canard
configurations with canards at various deflection angles. Recent experimental studies by Howard and
Kersh (ref. 17), and Ponton et al. (ref. 18) have given extensive information on the flow structure of
deflected canard geometries in the low subsonic regime and have shown encouraging results towards
the optimization of such configurations.

A series of experimental studies by Gloss and Washburn (refs. 13, 19, and 20) provided detailed
measurements of surface pressures as well as integrated force quantities on a variety of configurations
and flow conditions near the transonic regime. Experimental studies by Er-El and Seginer (ref. 21),
Calarese (ref. 22), and Oelker and Hummel (ref. 23) concentrated on the canard and wing vortex
systems and provided details into the mechanisms of their interaction.

The experimental studies cited above have, in general, concentrated on steady-state aerodynamics.
Considerably fewer studies have examined the unsteady aerodynamic flowfields, and more specifically,
the unsteady motion of canard configurations. An earlier study by Boyden (ref. 24) investigated the
dynamic stability and response characteristics of typical canard configurations and showed potential
aircraft maneuverability and agility benefits with the use of canards. More recent low-speed water-
tunnel studies (refs. 25-27) from the Naval Postgraduate School have examined the effects of close-
coupled canards and canard oscillations on the canard-wing unsteady aerodynamic interaction. A
low-speed study (ref. 28) of an actual aircraft configuration undergoing canard pitch oscillations has
also been conducted.

Computational fluid dynamics (CFD) has become a valuable tool for understanding the complex
three-dimensional flow physics of canard configurations. In particular, CFD has the potential to greatly
expand the understanding of the unsteady canard-wing interaction. A number of previous studies based
on conformal mapping, linear and non-linear vortex lattice methods, the transonic small perturbation
(TSP) equation, and the Euler equations have been performed (refs. 29-39). However, limited compu-
tational work has been performed using the time-accurate Reynolds-averaged Navier-Stokes (RANS)
equations. Although viscous computations are generally not required for certain leading-edge-type sep-
arations. viscous modeling is essential to capture some of the other significant features of canard-wing
aerodynamics such as vortex-induced secondary separations and other boundary-layer-type separations.
With the emergence of faster computers and increased memory capacities, the time-accurate RANS
equations can now be utilized.



1.4 Objectives

The primary objective of this study is to develop a complete understanding of the steady and unsteady
flowfield about canard-wing-body configurations in the high-subsonic and transonic flight regimes. The
development and enhancement of the computational technology necessary to predict the non-linear
time-accurate aerodynamics associated with close-coupled canard-wing interactions is an integral and
necessary portion of this study. In this study, the time-accurate RANS equations are solved for the
flow about highly-swept, close-coupled canard-wing-body configurations. The major numerical issues
involved in solving the RANS equations are addressed in detail.

The accuracy of the computational techniques developed and utilized in this study is demonstrated
through extensive comparisons with available experimental data. Computational results are compared
with experimental lift, drag and pitching moment coefficients, as well as surface pressure data. Accuracy
is further demonstrated through grid refinement studies for the steady-state computations, and through
both spatial and temporal refinements for the time-accurate computations. Comparisons of the time-
accurate computational results are also made with the limited unsteady experimental data which are
available.

The flow physics associated with canard configurations are studied through extensive computational
simulations of the steady and unsteady flowfield. The “baseline” geometry with a coplanar canard and
wing is used to examine the basic steady-flow characteristics of the canard-wing aerodynamic interac-
tion. These characteristics include the canard-wing leading-edge vortex interaction, canard downwash
effects and wing vortex breakdown. The effects of the canard’s vertical position and deflection angle
on the canard-wing interaction, and subsequent steady-state aerodynamic performance, are investi-
gated. The time-accurate simulations are utilized to examine the unsteady flowfield characteristics of
canard-configurations undergoing pitch-up ramp motions, pitch oscillations of the entire configuration,
and independent canard oscillations. Various pitch rates are used in the study and numerical issues
affecting the accurate simulation of the unsteady flowfield are addressed.

In addition to the details of the unsteady flowfield, the influence of fixed and moving canards on
the dynamic stability characteristics of the configuration are studied. The results of this study not
only demonstrate the suitability of RANS simulations for aerodynamic analysis and design of canard
configurations, but also provide for a future direction towards utilizing high-order CFD in stability and
control simulations.

1.5 Geometry

The geometry in this study is illustrated in figure 1.4 and is based on the wind-tunnel models used
by Gloss et al. (refs. 9, 10, 12, 13, 19, and 20) and Boyden (ref. 24). The current geometry has also
been tested at low-speeds and high angles of attack by Calarese (ref. 22) in the wind-tunnel facilities
at Wright Aeronautical Labs.

The basic geometry consists of a highly-swept wing, close-coupled canard, and a fuselage with a
constant cross-sectional shape aft of the nose region. The wing and canard are composed of biconvex
airfoil sections which linearly vary in thickness from 6 percent to 4 percent as defined from root-to-tip.
The resulting sharp leading edges of both lifting surfaces fix the primary separation locations and are
conducive to generating vortices at moderate angles of attack.

For the deflected or moving canard geometries, the canard rotates about the spanwise axis (perpen-
dicular to the symmetry plane) at the mid-canard-root location as shown in figure 1.4. For the swept



canard, static (fixed) or dynamic deflections result in pure rotation at the canard root section and a

combination of translation and rotation at the canard tip.

The cross-sectional shape of the body allows for a +10 to -10 deg mid-canard deflection without
a canard-root/body gap. Canard deflection angles, é., are given relative to the body axis (or wing
position) with positive . resulting in higher canard angles of attack (a¢). The 6. = 0.0 deg mid-

canard deflection represents the coplanar canard case.

Figure 1.1. Sketch of the leading-edge vortex structure of a canard or wing.
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Figure 1.2. Crossflow plane sketch of the leading-edge vortex.



Canard-downwash induced delay
in wing vortex formation

AN Mutual

N — N\ ] interaction
modifies vortex
trajectories

Canard vortex
Wing vortex

Figure 1.3. Schematic of the typical steady-state canard-wing vortex interaction for a con-
figuration at moderate angles of attack.

Moment Center
and Config Pitch

Axis of rotation / Axls

381
)
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Chapter 2

Computational Modeling

The ability to accurately simulate the steady and unsteady flowfield of close-coupled canard config-
urations is governed by the appropriate computational modeling of the relevant flow physics. Time-
accurate vortical flows, transonic shocks, and viscous effects including boundary-layer separations are a
few of the present features which require accurate computational modeling. In addition to the complex
flowfield. geometric complexities, including moving surfaces, require advanced zonal interfacing and
dynamic grid generation techniques.

The computational modeling used in this study is presented in the current Chapter. Geometry
modeling, grid generation. and other case-dependent issues such as zonal interfacing and boundary
conditions are discussed in detail. The methods and procedures which comprise the developed com-
putational technology for accurately simulating canard-wing-body flowfields is described. Details on
the formulation of the governing equations, numerical algorithm, and turbulence modeling are found

in the Appendices.

2.1 Numerical Method

The numerical method used in this study is based on the solution of the Reynolds-averaged Navier—
Stokes equations. Due to the significant potential for the presence of transonic and crossflow shocks,
the strong conservation law form of the Navier-Stokes equations is utilized. As is typical for the
<olution of the governing equations using body-fitted structured grids, the Navier—Stokes equations are
transformed to and solved in general curvilinear coordinates.

In general. for high Reynolds number flows, viscous effects are most significant in a thin region near
solid surfaces. Furthermore. in order to resolve the high gradient flow features normal to the body
surface, the spatial grid resolution is highest in the body-normal direction. Hence. viscous terms along
the body are often neglected and the solution of the resulting “thin-layer” Navier—Stokes equations is
obtained. However. it is noted that for complex configurations, the body normal directions are not
always confined to one curvilinear coordinate direction. The thin-layer approximation is often made in
all three directions and, as a result, only the cross-derivative viscous terms are neglected.

The algorithm employed to solve the Reynolds-averaged Navier-Stokes equations is the Beam-
Warming alternating-direction-implicit (ADI) algorithm (ref. 40). The form of the Beam-Warming
algorithm used in the current study is second-order accurate in space and first-order accurate in time.
Higher-order time accuracy is available with minor modifications, but is generally not required due to
the small stability-restricted time step sizes. For steady-state applications, the diagonal form (ref. 41) of
the Beam-Warming algorithm is utilized. The diagonalization of the original block tridiagonal matrices



results in scalar pentadiagonal matrices, which have much simpler and more efficient matrix-inversion
properties with the same second-order spatial accuracy (refs. 42 and 43). The use of spatially-varying
(or local) time stepping in conjunction with the diagonalization procedure leads to highly efficient
steady-state computations. Further details on the governing equations and numerical algorithm can
be found in reference 43 and are also presented in the Appendices.

2.1.1 Turbulence modeling

For simulations of complex geometries and flowfields, practical resource considerations dictate the use
of relatively large space and time scales in the computations. These scales are inadequate for direct
or large-eddy simulations of turbulent fluid motions. Therefore, the RANS equations are used to
simulate the flowfield. Using the RANS equations, high frequency small scale motions associated with
turbulence are not resolved. However, as a result of the RANS “time-averaging” process, additional
terms representing effective stresses due to turbulence can be modeled. In this study, the Baldwin-
Lomax algebraic model (ref. 44) is used to provide this turbulence closure.

The Baldwin-Lomax model simulates the effects of turbulence by computing an “effective” viscosity
in the stress terms of the Navier-Stokes equations. This effective viscosity is determined from a two-
layer algebraic model where the inner layer is a function of density, mixing length, and vorticity
magnitude. The outer layer is also based on vorticity distribution with additional parameters which
are functions of wall-normal distance and maximum differences in velocity magnitudes.

Since the inner algebraic model is a function of vorticity magnitude within the boundary-layer,
care must be exercised when using the model in vortex-dominated flowfields. In particular, when
vortices are present near the surface boundary layer, the unmodified Baldwin-Lomax model can yield
inaccurate turbulent viscosity estimates by scaling with the high vorticity values within the vortex
core. For the canard and wing with sharp leading edges, these strong vortices are expected to form.
Therefore, modifications as suggested by Degani and Schiff (ref. 45) are utilized in the current study.
These modifications provide searching logic within the turbulence model to ensure proper boundary-
layer vorticity scaling. Further details of the Baldwin-Lomax turbulence model are presented in the
Appendices.

2.1.2 Code performance

Although supercomputing technology is rapidly expanding, particularly in the area of scalable parallel
computing, code performance continues to be an area of major concern for large-scale complex simula-
tions. A majority of the CFD community continues to rely on serial supercomputers running efficient
highly-vectorizable flow solvers. Even though the efficiency “bottleneck” in CFD is often identified
as geometry definition and grid generation, the ability to compute detailed unsteady flowfields about
complex geometries is highly dependent on code performance. Memory, CPU cycle requirements and
convergence or time-step characteristics for a given flow solver are kev performance factors.

The general performance characteristics of the current flow solver including turbulence modeling,
multi-zoned interfacing (for steady-state simulations), and the application of boundary conditions are
described below. Approximately 30 words of in-core memory are required for each grid point and the
typical Cray C90 single-processor performance is measured at 450 MFLOPS and 6 usec per iteration
per grid point. It is noted that the performance estimates are dependent on maximum vector lengths
which is a function of the specific computational-space dimensions. The additional “overhead” for
dynamic gridding, moving interfaces and more complex boundary conditions, which are required for
the moving canard cases, increases the cited computational time requirements by up to 100 percent.
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A significant amount of this increase is due to interface searches and interpolations when mismatched
moving interfaces are required by geometry complexities.

For steady-state computations, approximately 4,000 iterations are required to converge from free-
stream conditions. Convergence is determined by a 3+ order-of-magnitude reduction in L2 Norm
values as well as constant force, moment and pressure predictions. Angle of attack, Mach number or
Reynolds number perturbations require an additional 1,500 iterations for re-convergence. The number
of iterations for convergence increases at higher angles of attack, where vortices are stronger and the
presence of vortex breakdown is possible. The number of CPU hours required for a typical steady-state
simulation of the canard-wing-body configuration ranges from 5 to 20 C90 hours depending on grid
size and convergence characteristics.

The number of iterations and overall computational time for unsteady cases varies widely. A
typical unsteady pitch oscillation case requires up to 14,000 iterations per cycle, depending on time-
step size and grid resolution. For most flow conditions, 2-3 cycles starting from a converged steady-state
condition are sufficient to obtain a periodic solution. At worst, almost 150 hours of C90 CPU time may
be required to obtain a periodic condition for a refined-grid simulation of a moving canard configuration.
Considerably less CPU time is needed for other presented unsteady results using coarser grids, larger
time steps, and higher reduced frequencies or pitch rates. In fact, key results presented in Chapter 4
show that higher pitch-oscillation frequencies can be used to significantly reduce the computational
requirements for dynamic stability predictions.

2.2 Geometry Modeling

The fuselage, wing, and canard of the current geometry are analytically defined and, therefore, are
computationally modeled with a high degree of geometric fidelity. However, in order to simplify the
modeling, certain aspects of the geometry are approximated. In particular, differences between the
computational and wind-tunnel models exist in the canard-body junction region, and near the tips of
both the canard and wing. Other regions which have negligible aerodynamic effects in this study are
omitted or altered as indicated.

The geometry used in this study has been tested extensively in a variety of wind tunnels as outlined
in section 1.5. For these wind-tunnel models, fairings were used to facilitate a vertical-offset canard
(i.e., non-coplanar) and are present for both coplanar and non-coplanar models. These fairings, which
account for slight asymmetries in some of the experimental results, are omitted in the current com-
putational modeling. The vertical tail, which is included in one of the experimental studies (ref. 24),
is expected to have minimal effects on the static and dynamic longitudinal characteristics and is also
omitted in the present study.

The computational modeling for the vertical-offset canard geometry (high- or low-canard) is ac-
complished by vertically translating the coplanar canard (mid-canard). The surfaces of the canard are
then extended into the upper or lower portion of the fuselage by linear extrapolations. This extrapo-
lation results in a thicker canard-root section for the vertical-offset canard. The 6 percent thickness,
mentioned in section 1.5, applies to the canard span station located at the same span as the wing-root.

The sting used for wind-tunnel mounting is modeled by extending the body to the downstream
boundary. In order to compare with the experimental data, integrated force and moment results
are given for the configuration without the sting and the predicted drag coefficients are corrected to
free-stream static pressure on the base area of the model.
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2.3 Static Grid Generation

Details of the grid generation process for the static geometry simulations are presented in this section.
A procedure for efficient grid generation of static canard-wing-body geometries has been developed
and is outlined in figure 2.1. In general for static cases, grid generation occurs only once and can be
performed as interactive pre-processing or, for sufficiently simple geometries, as an automated initial-
ization routine within the flow solver code. It is also noted that, as opposed to dynamic geometry cases,
total computational expenses involved in grid generation of the static geometries are not significant.

2.3.1 Surface grids

The baseline surface grids for the static canard-wing-body configurations are generated with algebraic
techniques. Using the S3D surface geometry and grid generation code (ref. 46) developed at NASA
Ames Research Center, the canard, wing and body component surface geometries are modeled from
their original analytical definitions. Figures 2.2 and 2.3 show the baseline and refined surface grids.
respectively, generated for the wing-body configuration with and without the fixed mid-canard. The
upper surface of the half-model canard-wing-body grid contains 4,625 (baseline) and 8,790 (refined)
points. To capture complex flow regions, the canard and wing surface grids are clustered near the
leading edge. trailing edge. and tip. For the wing-body alone geometry, the total number of points on
the half-body surface is reduced to 2,110 (baseline) and 4,320 (refined) points.

For the vertical-offset canard geometry, translation, extension and body intersection of the canard
surface grids are required. These steps are shown schematically in figure 2.4. Starting with the mid-
canard baseline surface grid, the canard and fore-fuselage are separated from the rest of the surface grid.
The canard is translated in the vertical direction as required, and then the root section of the canard
is extended towards the body centerline using linear extrapolation. Finally, surface grid intersection
techniques employed in the S3D (ref. 46) program are used to produce a single, continuous, offset
canard-wing-body grid. An example of the surface grid for the high-canard case is shown in figure 2.5.

Deflecting the canard is performed with an algebraic redistribution of the undeflected canard surface
grid combined with cubic spline interpolation. As with the vertical-offset canard geometries, only the
canard portion (canard plus forebody) of the surface grid is modified for the deflected canard cases.
The generation of the deflected canard surface grid, shown schematically in figure 2.6, is outlined as
follows:

1. Starting with the undeflected canard grid, the canard points are rotated about the specified axis;

2. The upper/lower body dividing line forward of the canard is assumed to be parabolic;

3. The axial distribution of the body cross-sections is adjusted according to the rotated canard:
and

4. The points along each cross section are redistributed using cubic spline interpolation based on
the new arc length of each section.

It is emphasized that for all deflected canard cases, the canard is actually rotated (not sheared)
about the mid-canard-root spanwise axis to maintain high geometric fidelity. An example of the surface
grid for the deflected canard case (6. = 10.0 deg) is shown in figure 2.7.

2.3.2 Flowfield grids

The static flowfield grids are generated by solving the elliptic grid generation equations with orthonor-
mal and clustering control functions near the zonal boundaries. Such techniques are readily available



in grid generation programs such as 3DGRAPE (ref. 47) and GRIDGEN (ref. 48), both of which are
utilized for the current canard-wing-body geometry.

The baseline grid for the undeflected mid-canard configuration is shown in figure 2.8 and is generated
as a single block, H-O topology grid with 152 axial, 32 radial, and 97 circumferential points. The H-O
topology is ideal for this type of configuration because of the natural clustering of grid points in certain
regions of the grid. When clustering is applied to obtain a viscous grid at the canard, wing, and body
surfaces, grid clustering also results along the complex flow regions of the canard and wing wakes, and
in the singularity regions along the nose radial axis and upstream of the canard. In order to resolve
the viscous boundary layer near the canard, wing and body surfaces. an average value of y* < 3 for
the first point away from the wall was achieved by clustering the flowfield grid to the surface (average
first grid spacing is approximately 107%¢). where y™ is defined as (ref. 49)

yt = Dl (23— 1)
Uy

In equation 2.3-1, y is defined as the wall-normal coordinate direction. The stretching of the grid in the
wall-normal direction is also minimized (typically, stretching factor < 1.2) to reduce numerical errors.

For the refined flowfield grid, the total number of points is increased from approximately 470,000
to over 1.7 million. As shown in the expanded view of figure 2.9, refinement of the grid is emphasized
in several key regions of the flowfield. In addition to an improved surface grid distribution, refinement
is achieved in the interaction region between the canard and wing. The viscous regions near all of the
surfaces are also refined by reducing the stretching factor while maintaining the original y™ criteria.
By reducing the amount of grid stretching, the resolution of any vortices near the canard and wing
surfaces will be improved.

Earlier figures 2.5 and 2.7 showed that the generation of vertical-offset or deflected canard surface
grids produces a mismatch on the body at the canard-wing junction. Furthermore, a geometric mis-
match is observed between the trailing-edge root of the close-coupled canard and the leading-edge root
of the wing. Consequently, to maintain the desired H-O topology grids, a mismatch is produced in the
zonal interface separating the canard and wing portions of the flowfield grid.

The flowfield grids of the different canard position and deflection cases are accommodated by
generating the canard and wing portions of the flowfield grid individually, with a mutual overlapping
interface analytically defined. Then. as required. the flowfield grids for the vertical offset are re-
generated using the elliptic solvers.

For the deflected canard cases, rather than using interactive elliptic solvers, the flowfield grids are
re-generated using an algebraic redistribution of the original elliptically-generated coplanar canard-
wing-body grid. Figure 2.10 illustrates the simple technique used in the algebraic redistribution. The
redistribution is performed for each line in the ¢ computational direction (from the surface to the outer
boundary). Based on the new position of a given surface point, each off-body point is repositioned using
cubic spline interpolation scaled with arc length from the outer boundary. Although this procedure
does not guarantee grid quality for large surface grid motions, it produces good quality grids and
is extremely fast and robust for small surface perturbations. As such, the highly efficient algebraic
redistribution procedure is well suited for the unsteady moving canard cases described in the next
section and Chapter 5.

By using these techniques for both the surface and flowfield grids. the grids for any canard vertical
offset and deflection angle (6:) can be efficiently obtained. The overall H-O topology grid, with the
mismatched interface, for a typical vertical-offset and deflected canard case is shown in figures 2.11 and
2.12, respectively. An expanded crossflow plane view of the mismatched interface is also shown with
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the solid grid indicating the downstream boundary of the canard portion grid. The zonal interfacing
techniques used to handle the mismatched interfaces are described in section 2.6.

The number of points for the resulting flowfield grids of the coplanar, vertical-offset and deflected
canard configurations are summarized in table 2.1. Where needed, up to six zones stacked in the
streamwise direction are used to minimize core memory requirements. Except for the canard-wing
interface of the vertical-offset and deflected canard cases, one-to-one grid matching is used on all
interfaces. Since the current computations are performed in the high-subsonic and transonic regimes,
all of the flowfield grids are extended upstream and downstream by approximately eight wing root-chord
lengths, and in the radial direction by six wing span lengths.

2.4 Dynamic Grid Generation

The generation of surface and flowfield grids for moving geometries can be a complex and time-
consuming process. In particular, for motion which is not pre-determined (e.g., dynamic maneuvers,
free aeroelastic responses, active control surface motions), grid generation is required to be an integral
part of the time-iterative flow solution. For prescribed motions such as forced oscillation, the process
can be simplified. With sufficient computational storage resources, the gridding of predescribed mo-
tions can be obtained by generating the grids as a pre-processing step to the flow solver. However,
this storage requirement becomes prohibitively large for even simple cases requiring viscous analyses.
Therefore, the capability to integrate efficient surface and flowfield grid generation within a flow solver
is highly desirable and is often needed.

Figure 2.13 illustrates the integration of the numerical flow solver and dynamic grid generation.
As each step of the time-integration is completed, the new surface geometry position is determined.
For the cases presented in this study, the configuration and canard motions are based on prescribed
ramp motions or forced oscillations. However, it is noted that for dvnamic maneuver simulations. the
equations governing the dynamics of the configuration can be easily integrated into the flow solver/grid
generation process described in this study.

Based on the new geometry position, surface grids are generated accordingly. For the moving
canard configuration of the current study, the steps outlined in section 2.3.1 for deflected canards are
utilized. The flowfield grid is then generated based on the algebraic redistribution concept described in
section 2.3.2 and illustrated in figure 2.10. By using these techniques, dynamic grid generation of the
moving canard flowfield produces less than 10 percent in grid generation overhead with no additional
computational storage requirements.

2.5 Boundary Conditions

The solution of the Navier—Stokes equations requires boundary conditions at each of the block bound-
aries. Although the finite difference scheme outlined in section 2.1 is implicit, the boundary conditions
are applied explicitly in the current study. Numerous past computational studies have demonstrated
the successful coupling of explicit boundary conditions with implicit flow solvers.

The boundary conditions which are required for external flow about canard-wing-body configura-
tions can generally be categorized into two main types: 1) physical boundary conditions such as solid
surfaces or outer boundaries of the solution flowfield, and 2) zonal boundaries or interfaces between
adjacent (or the same) computational blocks. The first type of boundary condition is described below
in this section. The implementation of the zonal boundary or interfacing is presented in section 2.6.
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Physical boundary conditions are applied to the boundaries of the entire computational domain.
For the current canard-wing-body study, these boundaries include the solid surfaces of the configuration
(canard, wing, and body), inflow boundary, outer computational surfaces, and the outflow boundary.
The solid surface boundary conditions are generally referred to as “no-slip” conditions. The components
of flow velocity in physical Cartesian space are explicitly set to the physical velocity of the solid surface.
The resulting types of solid surface boundary conditions for velocity are shown figure 2.14 and are
outlined as follows:

Type 1) For a static configuration, the physical and contravariant velocity components at solid
surfaces are set to zero:

Type 2) For a configuration with a fixed canard in rigid body motion, the surface grid remains
fixed with respect to the physical surface and the physical velocity is set to the surface velocity (the
contravariant velocity remains zero);

Type 3) For the moving canard configuration, the surface grid of the body (fuselage) will be moving
relative to the physical surface. In this case, the surface velocity is computed separately from the grid
velocity and is used to set the physical velocity components. If the entire configuration and the canard
surface are in independent motion, both the physical and contravariant components of velocity will be
non-zero. The additional computational step required for Type 3 boundary conditions is the separate
evaluation of the surface velocity at a physical point from the evaluation of the total grid velocity.

Surface pressures and densities are determined with the aid of the normal momentum equation,
perfect gas assumption, and an adiabatic wall condition. For flat surfaces, the normal momentum
equation yields the familiar dp/dn = 0. For the more general case, terms due to wall curvature and
acceleration of the moving surface yield

2
%=%+pa‘é-ﬁ (2.5 - 1)
where R is the local wall curvature and (dj - 71) represents the acceleration of the physical point on the
surface in the outward normal direction. The first and second RHS terms in equation 2.5-1 represent
effects due to wall curvature and wall acceleration, respectively.

However, further investigation of equation 2.5-1 reveals that differences in pressure due to both
wall curvature and surface acceleration effects scale directly with the first spacing of the wall-normal
grid. For viscous grids. the first spacing is small enough such that dp ~ 0 is a good assumption and
zeroth-order extrapolation of pressure is reasonable. Density at the surface is determined by assuming
an adiabatic wall condition which also yields a zeroth-order extrapolation of both temperature and

density.

2.6 Zonal Interfacing

The close-coupled nature of the canard and wing surfaces can produce significant geometric and grid
topological discontinuities for deflected or vertical-offset canard configurations. As described in sec-
tion 2.3.2 and in figures 2.11 and 2.12, a mismatched interface in the Howfield grid can result between
the canard and wing zones.

For the mismatched interface in this study, bilinear interpolation as formulated in references 50
and 51 is used to transfer flow quantities from one zone to the other. For general cases where the
mismatched interface is not necessarily composed of coincident surfaces, trilinear interpolation may
be required. Since this interpolation is non-conservative, accuracy has been determined by comparing



the solutions from a single-block (conservative) case with the multi-block mismatched-interface (non-
conservative) case for the undeflected mid-canard configuration. Differences in surface and flowfield
pressure contours between the two test cases were determined to be negligibly small.

As illustrated in figure 2.15, the mismatched interface between the canard and wing is overlapped
by one streamwise grid cell and actually consists of two sets of “base” and “target” surfaces. The
target surface represents the outer boundary of the current zone being solved, while the base surface is
a subset of an adjacent zone and is used to provide flow information from that zone. The interpolation
is performed by “locating” each point of the target surface within the set of base surface points. The
search required to identify the four base points which comprise the “cell” containing the target point
can be quite time consuming. After the target point is located, weighted coefficients (representing
distances) are computed for the nearest three base points. These coefficients are then easily used to
bilinearly interpolate the appropriate flow quantities to the target surface.

For static canard configurations, the interpolation described above is required only once and the
weighted coefficients are stored for use throughout the solution process. However, for the moving canard
cases, this mismatched interface will change for each time iteration and the interpolation is required
for each iteration. Figure 2.13 provides a flow-chart diagram illustrating the integration of the zonal
interface procedure within the solution process. After the new surface and flowfield grids are generated
for the current zone and time iteration, the interpolation for the mismatched interface is performed
and the appropriate flow quantities are transferred to adjacent zones. Since this process is required for
each time iteration, local search techniques which can significantly improve the interpolation efficiency
are employed.

Figure 2.16 illustrates a search procedure which, given a favorable starting position (cell #1), can
significantly reduce the time required to perform the interpolation. For the current study with moving
grids, a starting position based on the given target point position of the previous iteration is used.
Since time steps and the corresponding grid movements are relatively small, a successful search and
interpolation is usually accomplished within 10 search steps. The procedure is then repeated for each
target point in the target surface. Using this technique, the time required to interpolate the interface is
reduced by up to two orders of magnitude. For the moving canard cases, interface interpolation results
in a 25-50 percent approximate increase in overall computer time requirements.

2.7 Dynamic Stability Analysis

In order to understand better the unsteady characteristics of the canard-wing-body configurations,
dvnamic stability analvses are performed on the time-accurate computational simulations. Both rigid
pitch-oscillation of the entire configuration and independent canard oscillations (moving canard cases)
are considered in the analyses. The effect of the presence of the canard on dynamic stability parameters,
including pitch damping and oscillatory stability, are considered.
Using linear theory, the time-dependent moment coefficient due to rigid pitch oscillation of the
entire configuration can be expressed as
Cm=aChy, + iCm + e

.=
gc*
We ¢ 2Wa Cmg + Com, +

Uz
...higher order terms (h.o.t.) (2.7-1)

where Cp,, Cm,, Cm,. and Cp, are the stability derivatives (0Cp,/da)o. (6Cm/a(;—,i))o
(3Cm/3(ﬁ%))o and (acm/a(f;%))o. respectively; q is the angular velocity of the configuration about

o’
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the pitch axis; and Cpr, = 0 (not included in eq. 2.7-1) for the symmetric configuration. The notation
()o indicates that partial derivatives are evaluated assuming no disturbance from the other terms.

Assuming a sinusoidal motion of @ = am, + Asinwt, where A is the amplitude of the oscillation,
equation 2.7-1 can be expressed as

Crm = amCrmy + (Cm,, — k*C, ) Asinwt+

(Crmy + Cm,)Akcoswt + ...h.o.t. (2.7-2)

The terms (Cpm, — k*Crm,) and (Cm, + Ci,) in equation 2.7-2 represent the oscillatory stability and
damping-in-pitch parameters, respectively.
For the oscillating canard cases, the sinusoidal canard deflection as a function of time is given as
Sc = bem + Acsinw,t, where A, is now the amplitude of the canard oscillation. In this case, the
time-dependent moment coefficient due to canard oscillations is written as
T S NS =1 S e MU 1Y) (2.7 3)
m>ms, 2 LR Wee Mg 4UOQO Mae :

where Cr, . Cm,, Cm and Cp,_ are the stability derivatives (0Cm/86c)o; (acm/a(%fc—))o

IC /055 ))g and (8C, 8(-'14 o, respectively; q. is the angular velocity of the canard about its
Mo UL

pitch axis.
Again, the resulting dynamic stability parameters are derived from

qc?

Cim = 6coCrmg, + (Crms, — k" Crmg, ) Acsinuet+
(Cm, + Cmy, )Ackccoswet + ...h.o.t. (2.7 - 4)

where the stability terms are now expressed as (Crm,, — kCQCmq, ) and (Cr, + Cp, ) representing the
c c c
oscillatory stability and damping-in-pitch parameters, respectively. for canard oscillations.
Similar analyses of the normal force coefficient given by

22

ac qc
N = ; —Cn, N. + ...h.o.t. 2.7 -
Cy =aCn, + T 2Uoo C'J\ + 0L C'Nq + 0.t (2.7 -5)

or
. o

Cn = 6.Cn;, + %CN& + 2‘;;; Cw,, + %C% +..hodt. (2.7 - 6)
will \ield the pitch dibplacement and pitch rate terms given by (Cx, — kQC’NQ) and (Cn, + Cx,) from
eq. 2.7-5: or (O, — ke CN )and (C’N + Cn, )from eq. 2.7-6.

The dynamic stability parameters for the canard configurations are predicted from the Fourier
analysis of the computed time histories of normal force and pitching moment coefficients. For example,
the time-history of computed pitching moments can be expressed as

7

_'(')

Cm(t) = ﬂ_ + a;sinwt + bycoswt + .. h.o.t. (2.

where the Fourier coefficients are given by

To/
an = / (t)cos(nwt)dt; n=0,1,..
T To/()
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and

2 T./2

by = —/ Cm(t)sin(nwt)dt; n=1,2,..

To —T5/2
In most cases of forced sinusoidal oscillations of the canard or the entire configuration, the normal
force and pitching moment responses are adequately represented by the first three Fourier coefficient
terms (ag, a1, and b;). This assumption is easily verified by direct comparisons of the original predicted
responses and the Fourier analysis using only these terms.

A direct comparison of equation 2.7-7 with equations 2.7-2 or 2.7-4 vields the result

ai )
Ack.

a
(Cmg — K*C,) or (Cpy, = k*Ch,,) = (A_lk) or (

for pitch damping, and

by

b
(Crmg + Cm,) or (C'mé.C +Cm,, ) (Z) or (-Az)

]

for pitch oscillatory-stability parameters. Similar analyses of the normal force responses will produce
predicted values for the pitch displacement and pitch rate parameters.

Table 2.1. Surface and flowfield grid data for coplanar, vertical-offset and deflected canard configurations

Surface Flowfield grid Total
points dimension number of
Configuration (half-body) (j,k,I-normal)(zone) grid points
Baseline canard-off 4,220 99 x 79 x 32 250,000
Refined canard-off 8,640 136 x 119 x 58 940,000
Baseline mid-canard 9,250 152 x 97 x 32 470,000
Refined mid-canard 17,580 250 x 119 x 58 1.700,000
Low- or high-canard 11,000 89 x 128 x 40 {canard) 725,000
70 x 97 x 40 (wing)
Deflect canard 9,250 84 x 97 x 40 (canard) 600,000
70 x 97 x 40 (wing)
Unsteady fixed canard 9,250 152 x 97 x 32 470.000
ramp or pitch (baseline)
Unsteady fixed canard 17.580 250 x 119 x 58 1,700,000
ramp or pitch (refined)
Unsteady moving canard 9,250 84 x 97 x 40 (canard) 600,000

70 x 97 x 40 (wing)
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Figure 2.1. Schematic diagram of the grid generation procedure for static canard configu-

rations with various canard vertical positions and deflections.
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Figure 2.2. Baseline surface grid for the wing-body configuration with and without an
undeflected mid-canard.
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Figure 2.3. Refined surface grid for the wing-body configuration with and without an
undeflected mid-canard.
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Figure 2.8. Flowfield grid topology and expanded near-body grid for the undeflected mid-

canard configuration.
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Figure 2.9. Comparison of the baseline and refined near-body flowfield grids for the unde-
flected mid-canard configuration.
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Figure 2.13. Schematic illustrating the integration of dynamic grid generation and zonal

interface computation into the time-iterative solution process.
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Figure 2.14. Types of velocity boundary conditions at the surfaces of the canard, wing and
body.
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Chapter 3

Effect of Canard on Steady-State
Aerodynamics

The influence of canards on the steady-state aerodynamics of the wing-body geometry is studied
through a series of computational simulations. Computations are conducted for the configuration with
and without the canard. with the canard at various vertical positions, and with the canard at specified
deflection angles. The accuracy of the steady-state computations is assessed with experimental com-
parisons and a grid refinement study. The effect of the canard is characterized through analyses of the
aerodynamic performance (e.g.. lift. drag, and pitching moments), and with the detailed investigation
of the canard-wing flow structure.

3.1 Experimental Validation: Coplanar Canard

To assess the accuracy of the computational modeling given in Chapter 2 for steady-state predictions,
computations are conducted on the wing-body geometry with and without a coplanar canard. All
computational results in this section are for a transonic Mach number (M) of 0.90, a Reynolds
number based on mean wing aerodynamic chord (Rez) of 1.52 million, and nominal angles of attack
(a) ranging from 0 to 12 deg. Based on transition strips used in the experimental studies, boundary-
layer transition for the computations is assumed to occur at the canard and wing leading edges and
at the nose of the body. Comparisons between the computed results and the force balance and wing
surface pressure measurements are made for both the baseline and refined grids.

3.1.1 Baseline grid

The first set of results is for computations performed on the baseline grids which were generated from
the surface grids of figure 2.2. A comparison of computed wing surface pressure coefficients (Cp) with
experimental data (ref. 13) at o & 4 deg is illustrated in figure 3.1. The precise angles of attack are
reported in reference 13 and are shown in the figure. It is noted that no angle-of-attack or Mach number
corrections to calibrate the code were made for any computations in this study. Comparisons with the
experimental data are given at wing semispan-stations of 25, 35, 45, 65, and 85 percent as measured
from the symmetry plane. The first three span-stations on the wing are within the canard-span region.

For the canard-off case. the leading-edge vortex. as indicated by the suction peak in the C), distri-
bution. moves aft with increasing wing span. At the relatively low incidence of approximately 4 deg.
the major canard influence on wing surface pressures is the canard downwash effect. Within the span
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of the canard, a significant difference in wing surface pressure between the canard-on and canard-off
cases is observed. The effective local angle of attack (a.ss) of the wing is reduced and the formation
of the wing leading-edge vortex is inhibited. At wing span-stations beyond the canard tip, the wing is
no longer influenced by the canard downwash and the leading-edge vortex forms. In fact, outboard of
the canard tip the canard upwash increases the a.s; of the wing. This normally would be expected to
increase the lift of the wing-tip region. However, the upwash effect is minimized due to the high sweep
of the wing, which results in a relatively large distance between the canard-tip and wing-tip regions.

The discrepancies between the computed and measured data towards the wing tip are due to both
computational modeling of the tip geometry and grid resolution. A previous study by Srinivasan et al.
(ref. 52) found that, especially for separated and vortex-dominated flows, the modeling of the tip
geometry has a considerable effect on the accuracy of the numerical results near the tip. Since detailed
geometric data were unavailable for the canard and wing tips of the wind-tunnel model, the tips are
computationally modeled as rounded.

In addition to the tip modeling. grid resolution has a significant effect on the accuracy of the
computations. Difficulty in capturing the leading-edge vortex increases towards the canard and wing
tips. As the vortex is convected downstream and away from the leading edge. computational accuracy
becomes increasingly sensitive to the degrading grid resolution. This effect becomes more acute at
higher angles of attack where the vortex trajectory is further above the wing surface. An effort to
improve the computational accuracy by increasing the grid resolution is performed and presented later
in this study.

Although detailed comparisons of flow quantities such as surface pressure are better measures of
the computational accuracy, integrated quantities such as lift, drag. and moments are often used to
assess the overall aerodynamic performance characteristics of a given configuration. Figure 3.2 presents
the comparison of canard-on and canard-off integrated force and moment quantities for the coplanar
canard-wing-body configuration. The canard-on computations are also compared with the appropriate
experimental data (ref. 10). Figure 3.2 shows that the nonlinearity of the lift coefficient curve for the
canard-on case is captured well by the computations. For angles of attack less than 6 deg, the computed
lift coefficients for the canard-off and canard-on cases are comparable. At these low angles of attack.
the reduction in wing lift due to the canard downwash is balanced by the additional canard lift. As
the angle of attack is increased, the canard-on lift curve exhibits significant nonlinearity.

The drag polar in figure 3.2 indicates comparable levels of drag coefficient for both the canard-
on and canard-off cases. The “cross-over” of the two drag curves shows the potential of the canard
configuration for reduced drag at a given lift. At low angles of attack. the canard-on drag is higher due
to the additional viscous drag of the canard surface area. At higher angles of attack, the computed
additional lift due to the canard and the canard’s influence on the wing aerodynamics results in a
higher lift-to-drag (L/D) ratio for the canard-on case.

Due to the relative location of the canard and the moment-center (fig. 1.4). the pitching moment
curve in figure 3.2 illustrates the typical nose-up pitching moment which is characteristic of many
canard configurations. At higher angles of attack, the computations overpredict the pitch-up moment
of the canard-on case. This overprediction is further studied by examining the lift and moment curves
of the canard and wing regions separately.

The lift and pitching moment coefficient curves for different regions of the canard-wing-body config-
uration are given in figure 3.3. The forward and aft regions including the body {(henceforth designated
as the canard and wing regions, respectively) are chosen to correspond with regions measured in the ex-
periment (ref. 10). The significant decrease in the wing-region lift for the canard-on case in comparison
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with the canard-off case is due to the canard downwash. In figure 3.3, the lift coefficient of the com-
plete canard-on configuration is being supplemented by the canard region lift. Favorable experimental
comparisons of the canard and wing region lift curves confirm that the computed lift is accurately
distributed between these two regions. The pitching moment curves show that the canard’s influence
on the wing region pitching moment is nominal. The nose-up pitching moment of the canard-on config-
uration is almost entirely due to the canard region. Again, good comparisons with experimental data
indicate accurate distribution of pitching moment in the computed results. Figure 3.3 also shows that
the overpredicted pitch-up moment for the complete configuration, noted in figure 3.2, is approximately
evenly distributed between the canard and wing regions.

3.1.2 Refined grid

At higher angles of attack, the canard and wing leading-edge vortex trajectories move above and away
from the highly-clustered grid region of the canard and wing surfaces. In addition, separated regions on
the wing become more prominent, recovery shock strength increases and the potential for leading-edge
vortex burst exists. Accurate computational modeling of these and other relevant flow features requires
improved surface and flowfleld grid resolution.

To improve the accuracy of the computed results in this study, refined surface and flowfield grids
were generated for the coplanar canard-on and canard-off cases. The refined surface grids were shown
earlier in figure 2.3. Refinement of the wing and canard surface grids, as well as the body surface grid
near the canard-wing junction, was emphasized. For the current topology. the body surface grid at
the junction directly determines the grid resolution between the canard and the wing, and therefore
affects the computational accuracy of capturing the canard's influence on the wing. The resulting
canard-off and canard-on flowfield grids generated from the refined surface grids contain over 900.000
and 1.7 million points, respectively.

Since the wing. in the absence of the canard, exhibits a higher a.ss and a more pronounced
leading-edge vortex. the canard-off configuration was chosen to verify the anticipated improvement in
computational accuracy with the refined grid. Figures 3.4 and 3.5 illustrate computed surface pressure
coefficients for the baseline and refined grids of the canard-off configuration at a = 8.21 deg and o =
12.38 deg, respectively. In both figures, the comparisons with the experimental data show considerable
improvement for the refined grid solution over the baseline grid solution. Figure 3.6 illustrates the
computed force quantities using the refined canard-off grid. Note that since the computations were
performed at three angles of attack only, the refined grid results in figure 3.6 are indicated as solid
square symbols. Improvements in lift, drag and pitching moment comparisons with experimental data
are also observed.

A comparison between canard-on and canard-off wing surface pressure coefficients at a ~ 12 deg is
shown in figure 3.7. Good agreement between the computed and experimental data (ref. 13) shows the
suitability of both the canard-on and canard-off refined grids for angles of attack up to at least 12 deg.
A strong secondary vortex is evident from the sustained low pressure region between the suction peak
of the primary vortex and the wing leading edge. In comparing the results of figure 3.7 with figure 3.1,
one observes that for the canard-on case at higher angles of attack, the wing leading-edge vortex is no
longer inhibited at the inboard wing span-stations. The vortex forms at the wing apex and remains
near the leading-edge up to the wing location corresponding to the canard-tip span-line.
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3.2 Aerodynamic Performance

The highly interactive flowfield of a close-coupled canard results in aerodynamic performance which is
extremely sensitive to changes in canard geometry, position and deflection angle. These changes, in
turn, have pronounced effects on the lift, drag and pitching moment performance of the wing and the
entire configuration. In order to determine the potential aerodynamic performance benefits of utilizing
canards. the effects of canard position and deflection on aerodynamic performance are investigated in
this section.

Comparisons between the computed results and the available experimental data (refs. 9. 10. 12, 13,
19, and 20) are made to validate the current method for accurately predicting the steady flowfield of the
vertical-offset and deflected canard cases. Computations for these cases are at transonic Mach numbers
(M) of 0.85 and 0.90, angles of attack (a) ranging from -4 to +12 deg. canard vertical positions of
z/t = —0.185, 0.0 and +0.185 (henceforth referred to as low-, mid- and high-canard, respectively), and
canard deflection angles (é.) for the mid-canard cases from —10 to +10 deg. To match experimental
conditions, at My, = 0.85 and 0.90, the Reynolds number based on the mean aerodynamic chord of the
wing (Reg) is 2.82 million and 1.52 million, respectively. As with the earlier coplanar (or undeflected
mid-canard) cases, transition strips were used in the experiments at the body nose and leading edges
of the canard and wing. Therefore, the computations are performed assuming fully turbulent flow.

3.2.1 Canard vertical position

Comparisons of the lift, drag and pitching moment curves with experimental data (ref. 10) are given
in figure 3.8 for the low-, mid-, and high-canard cases. Figure 3.8(a) shows the nonlinearities in the
high- and mid-canard lift curves. At o > 4 deg, significant differences are noted in the lift curves
for the three canard positions. Although the absolute values of lift are slightly underpredicted by the
computations, the relative differences are captured. Further investigation of the incremental changes
due to canard vertical position is presented later in this section.

Figures 3.8(b) and (¢) show computed drag and pitching moment coefficient comparisons with
experimental measurements. At the higher angles of attack. the low-canard configuration exhibits lower
drag at a given a. Figure 3.8(c) shows an overprediction of pitching moment by the computations at
the higher angles of attack. This overprediction is of the same order-of-magnitude as shown earlier and
discussed in figure 3.2. However, as in the lift and drag curves of figures 3.8(a) and (b), the overall
pitching moment comparisons are favorable.

Figures 3.9(a) and (b) illustrate lift and moment curves, respectively, for the two component regions
of the high-canard configuration. As with the coplanar canard studies, the canard region consists of
the canard and the body forward of the wing leading-edge root location (fore-body). The wing region
consists of the wing and the remaining aft-body (not including the sting).

The wing portion lift curve slope of figure 3.9(a) is influenced by the effect of the canard downwash
on reducing wing lift. The total lift is augmented by the canard portion lift. Figure 3.9(a) also shows
that the slight underprediction in total lift is primarily due to the computed wing portion lift. The
pitching moment curves in figure 3.9(b) show that the wing, in the presence of the canard. exhibits
statically stable characteristics while the canard pitching moment causes the total configuration to
be approximately neutrally stable. Such characteristics are often typical of canard-configured aircraft
and were also evident in the mid-canard configurations shown earlier. Favorable comparisons in fig-
ures 3.9(a) and (b) between computations and experimental data indicate that the distribution of lift
and moment between the component regions is captured well by the computations.
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In order to predict the potential benefits of placing the canard in a non-coplanar (either high- or
low-canard) configuration, a more detailed analysis of the lift and drag results is required. Polynomial
curve fits through the computational and experimental results are used to determine the incremental
lift and drag differences due to vertical positioning of the canard.

Figure 3.10(a) shows the effect of canard vertical position on the incremental change in lift coefficient
(ACy) at different angles of attack. The reference line (ACy = 0.0) is the Cp, corresponding to either
computations or experiment for the mid-canard configuration. Although the absolute AC} values are
not exactly predicted by the computations, it is noted that relatively small values are being compared.
The qualitative trends indicating the relative effects of canard vertical position are captured well by the
computations. Both the computations and experiment show increased lift at higher angles of attack
for the high-canard case. However, the low-canard ACy curves show significant loss of lift as o is
increased.

The incremental changes in drag coefficients (ACy) given in figure 3.10(b) show that the high-
canard configuration exhibits the best overall drag characteristics. At a higher Cp. the high-canard
case has a lower C,; than both the mid- and low-canard cases. The results in figure 3.10 show clear
evidence of an unfavorable canard-wing interaction for the low-canard configuration.

3.2.2 Canard deflection angle

Comparisons of the computed lift. drag and pitching moment curves with experimental data (ref. 12)
are given in figure 3.11 for mid-canard deflections (é.) of 0 and 10 deg. Figure 3.11(a) shows the
nonlinearity in the lift curves. Note that the subtle differences in the experimental 6. = 0 deg and
5. = 10 deg lift curves are captured well by the computations. The drag polar curves in figure 3.11(b)
show that the undeflected mid-canard (6. = 0 deg) exhibits a lower overall drag coefficient. The drag
polars also show that minimum Cjy for the 10 deg case occurs at a negative lift coefficient. Figure 3.11(c)
shows that increasing mid-canard deflection increases overall pitching moment for all computed angles
of attack. Significant nonlinearities due to the canard-wing interaction are also noted in the pitching
morent curves.

Similar to the vertical-offset studies, the lift and pitching moment curves are separated into two
configuration component regions in order to examine the effects of mid-canard deflections in more
detail. Figures 3.12(a) and (b) illustrate lifts and moments, respectively, for the . = 10 deg case.
The wing portion lift curve of figure 3.12(a) shows the effect of the canard downwash on reducing
wing lift. For example. at a = 0 deg, the additional canard lift (due to its deflection) is mostly
cancelled by the negative lift generated by the wing (due to the canard downwash). The pitching
moment curves in figure 3.12(b) show that the wing, in the presence of the canard. exhibits statically
stable characteristics while the canard pitching moment causes the total configuration to be statically
unstable. Such characteristics are often typical of canard-configured aircraft. Favorable comparisons
in figures 3.12(a) and (b) between computations and experimental data indicate that the distribution
of lift and moment between the component regions of the mid-canard deflection cases are captured well
by the computations.

An analysis of the effect of canard deflection on lift, pitching moment, and, particularly. trimmed
conditions is of interest. For long-coupled canard configurations, the effect on aerodynamic performance
is usually limited to the lift of the canard itself and the total pitching moment. However, the close-
coupled canard has significant influences on wing performance as well.

Figure 3.13 shows lift and moment curves for the canard and wing portions at various canard
deflection angles (6.) ranging from -10 to +10 deg. While the canard portion lift curve (fig. 3.13(a))
exhibits increasing lift for increasing &, at a given a, the wing portion lift curve (fig. 3.13(b)) decreases
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for increasing é.. As é. is increased. the canard generates greater lift and, consequently, greater
downwash in the canard wake. The resulting effective wing angle of attack (aess) on the inboard
portion of the wing decreases with increasing 6.. Vortex visualization results presented later in this
study will show that. for certain o and é. values, a.s; can be negative in the inboard wing while
freestream « is positive.

The canard and wing portion pitching moment curves for various canard deflection angles are given
in figures 3.13(c) and (d). respectively. The canard portion pitching moment increases as 6. is increased
while the wing portion pitching moment is relatively insensitive to é.. The strong 6. coupling with wing
portion lift (fig. 3.13(b)) and the weak coupling with wing moment (fig. 3.13(d)) indicate a significant
shift in wing center-of-pressure as a function of é.. Due to the canard downwash effect of “unloading”
the inboard portion of the wing, the aft-swept wing’s center-of-pressure location moves outboard and
aft for increasing canard deflections.

Figure 3.14 illustrates lift and moment as a function of é, at a representative a of 4.27 deg. The
lift curves in figure 3.14(a) are given for the total configuration, canard portion and wing portion. For
increasing 6., the cancellation of the lift between the canard and wing portions is clearly observed.
At this moderate angle of attack, the total lift is minimally affected by the deflection of the canard.
The moment curves in figure 3.14(b) show that the canard portion moment is the major contributor
to changes in the total configuration moment. At this condition (M, = 0.85,a0 = 4.27 deg). the
configuration is trimmed about the moment center (69.17 cm from the nose) at &, ~ —4 deg.

For a realistic aircraft configuration, the determination of trimmed lift and drag is critical in assess-
ing aerodynamic performance. A contour plot of pitching moment about the model center-of-gravity
location (c.g. = 59.14 cm from the nose) is given in figure 3.15. The trimmed (C,,, = 0.0) pitching mo-
ment curve is highlighted and indicates that relatively small, negative canard deflections are required
to trim this configuration at moderate angles of attack.

3.3 Canard-Wing Vortex Interaction

For the configurations in this study, many of the complex non-linear effects of the various canards on
aerodynamic performance can be directly attributed to the canard and wing vortical flowfields and. in
particular, the canard-wing vortex interaction. The current configuration flowfield is characterized by
strong leading-edge vortices from the canard and the wing. As vortex strength increases, secondary
separation induced by adverse pressure gradients can result in strong secondary vortices. The presence
of secondary vortices will also serve to alter the position and trajectory of the primary canard and/or
wing vortex. In cases of high vortex strength, tertiary separations can be observed as well.

One of the primary mechanisms for the canard-wing interaction is the canard’s influence on the wing
leading-edge vortex. Both the canard downwash and the canard leading-edge vortex have pronounced
effects on the formation and subsequent trajectory of the wing vortex. The canard vortex influences
the surface pressures on the wing directly and, to a greater extent, indirectly through its influences
on the wing vortex. Furthermore. the effect of the canard vortex on the wing is highly sensitive to
vortex strength and relative location, which are both significantly modified by variations in the canard
position and deflection angles.

3.3.1 Coplanar canard

A baseline analysis of the canard-wing vortex interaction is performed for the undeflected mid-canard
(coplanar) configuration at My, = 0.90. Re; = 1.52 million, and various angles of attack. Comparisons
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are made between canard-on and canard-off cases to determine the effects of the canard on the structure
of the wing flowfield.

Figure 3.16 illustrates a comparison between the upper-surface pressure contours of the canard-
off and canard-on configurations at three angles of attack. These contours show a significant canard
influence on the body as well as the influence of the canard and wing vortices on surface pressures.
The vortex-induced low pressure region (L) gives a qualitative estimate of the vortex trajectory over
the upper surface. As angle of attack increases, these low pressure regions move inboard. Note that,
since the canard sweep angle is lower, and because there is an absence of a downwash field upstream
of the canard, the recovery shock is strongest and most easily observed on the canard at the higher
angles of attack.

Although evident in the surface pressure contours of figure 3.16, the canard’s effect on the formation
of the wing vortex is more clearly observed in the computed surface flow patterns given in figure 3.17.
The secondary separation line (S2) due to the wing leading-edge vortex is observed for both the canard-
on and canard-off cases. As the angle of attack is increased, the secondary separation and primary
attachment lines move inboard and are indicative of the upward and inward movement of the wing
primary vortex. The surface flow patterns for the canard-on cases show the modified wing flowfield
including the delay in wing primary vortex formation. At a ~ 4 deg, no evidence of a leading-edge
vortex is detected on the inboard portion of the wing. At « ~ 8 deg and 12 deg, the corresponding
inboard surface flow patterns are influenced by a small leading-edge vortex which is comparable to
a leading-edge vortex formed for the canard-off case at lower angles of attack. These observations
correlate with the surface pressure distributions which were given earlier in figures 3.1 and 3.7.

The dominating effect of the canard downwash on the wing, inboard of the canard-tip span-line,
has already been illustrated. Outboard of the canard-tip span-line, the canard leading-edge vortex
is the primary mechanism for the canard’s influence on the wing flowfield. Crossflow-plane vortex
visualizations in the form of normalized total pressure contours and velocity vectors at two constant
streamwise stations are given in figure 3.18, and show the effect of the canard-vortex induced flow on
the wing. The approximate total pressure loss at each canard or wing primary vortex core is also given
in figure 3.18 and is an indication of the instantaneous vortex strength. Although the computed canard
vortex (fig. 3.18(a)) is considerably weaker than the corresponding wing vortex, its influence on the wing
flowfield is still significant. For the two co-rotating vortices, each with a counter-clockwise rotation and
position as shown in figure 3.18(a), the wing vortex flowfield induces a relative downward and inward
motion of the canard vortex while the canard vortex induces an upward and outward movement of
the wing vortex. In the absence of such interaction, the canard and wing vortex trajectories would be
expected to follow an upward and outward path which would be dependent on the angle of attack and
respective sweep angles.

In addition to the canard-wing vortex interaction, the flowfield is further complicated by the pres-
ence of a counter-rotating secondary vortex. The secondary vortex for the canard-off case is clearly
visible in both total pressure contours and velocity vectors of figure 3.18(b). The smaller wing vortex
for the canard-on case renders the corresponding secondary wing vortex undetectable in the scale of
figure 3.18(a). However, computed surface flow patterns given earlier in figure 3.17 clearly show the
existence of secondary separation for both the canard-on as well as the canard-off cases. Evidence of a
tertiary wing or canard vortex is not observed.

3.3.2 Canard vertical position

For the same flow conditions as the mid-canard cases given in the previous section (3.3.1), the differences
in wing surface pressures between the high- and low-canard configurations are shown in figures 3.19(a)
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and (b) for o = 4.27 deg and 8.55 deg, respectively. The upper and lower surface pressure distributions
are given at three wing span stations for each angle of attack. All three stations are inboard of the
canard-tip span line and, therefore, are directly influenced by the high- or low-canard downwash.
Results in figure 3.19 show that the relative canard and wing positions have a large effect on the level
of canard-wing interaction.

At a = 4.27 deg (fig. 3.19(a)), small differences in wing surface pressures are observed. For the
high-canard case, lower pressures on the upper surface near the wing leading edge indicate the possible
formation of a leading-edge vortex. In the low-canard case, formation of the wing leading-edge vortex
is inhibited due to the canard downwash and the relative positions of the canard and wing.

In figure 3.19(b), the wing leading-edge vortex is clearly visible and contributes substantially to
the lift of the high-canard configuration. However, even at this higher angle of attack. the low-canard
results do not show evidence of a strong vortex on the inboard wing. In addition to inhibiting the
formation of this vortex. the low-canard case also shows a substantial low pressure region on the wing
lower surface. Both of these factors (absence of the wing vortex and low pressure on the wing lower
surface) contribute to the loss of lift for the low-canard case observed in figures 3.8(a) and 3.10(a).

Further insight into the unfavorable nature of the low-canard configuration can be gained by ex-
amining the canard-wing flowfield structure. Figure 3.20 illustrates crossflow contours of stagnation
pressures for the high- and low-canard configurations at « = 4.27 deg. For each configuration, five
streamwise stations are chosen to illustrate the development and convection of the canard and wing
vortices. The high-canard results (fig. 3.20(a)) show the formation of the canard vortex and its sub-
sequent trajectory over the wing surface. At x/¢ = 3.2 and 3.6, formation of the wing leading-edge
vortex is observed. Although the vortex positions differ, the high-canard-wing vortex interaction has
similar characteristics to that of the mid-canard configuration shown in section 3.3.1.

The low-canard case given in figure 3.20(b} shows a significantly different flowfield structure. Like
the high-canard case, the low-canard vortex forms as visualized at x/¢ = 2.0. However, due to the
relative position of the low-canard to the wing and the canard-wing aerodynamic interaction, the
subsequent canard vortex is convected under the wing surface. The low-canard vortex can therefore
induce an unfavorable low pressure region on the wing lower surface. The formation of the wing vortex
on the upper surface is again observed in figure 3.20(b) at x/¢ = 3.6.

Figure 3.21 shows that at the higher angle of attack of 8.55 deg. the low-canard vortex interacts
directly with the wing. The original low-canard vortex (x/¢ = 2.0) splits into two (upper and lower
canard) vortices upon impact with the wing leading edge (x/¢ = 2.8). Further downstream at x/¢ > 3.2.
the split canard vortices continue to have the same rotational structure. but now exhibit independent
trajectories. The canard lower vortex (C1L), with its counter-clockwise rotational sense as viewed in
the figure. tends to move inboard due to its proximity to the wing lower surface. The canard upper
vortex (C1U), also with a counter-clockwise rotation, is additionally influenced and moved inward by
the formation of the wing vortex (W1) on the wing upper surface {x/¢ = 3.2 and 3.6).

To visualize the results in figure 3.21 more clearly, a qualitative schematic of the canard-wing vortex
trajectories for the low-canard case is given in figure 3.22. The low-canard vortex impacts the wing
leading-edge and is split into the upper and lower vortices. The wing vortex forms on the wing upper
surface and interacts with the canard upper vortex.

A perspective view of the low-canard vortex interaction with the wing is given in figure 3.23 for
a = 8.55 deg. Crossflow contours of stagnation pressures show the formation of the canard vortex.
the splitting of the canard vortex by the wing, and the formation of the wing vortex on the outboard
wing. The effect of this wing vortex on the canard upper-vortex trajectory is also clearly visible.
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3.3.3 Canard deflection angle

In addition to those canard influences due to changing vertical position, the additional freedom-of-
motion of mid-canard deflections allows for further variations in the types of canard-wing vortex struc-
tures. Changing 6, affects the strength of the canard downwash and vortex, the location of the canard
trailing-edge relative to the wing, and the subsequent canard vortex trajectory in the wing flowfield.

Results given in section 3.2.2 illustrated the effect of canard deflections on lift, drag and pitching
moments for the entire configuration and the separate canard and wing component regions. The
aerodynamic performance characteristics from that section are better understood with further analyses
of the canard-wing vortex interactions. The differences in surface flow patterns for éc = 0 deg,
5 deg and 10 deg are illustrated in figure 3.24. As for the undeflected mid-canard case, the secondary
separation lines from the canard and wing primary vortices are indicated (S2) for each case and show
that viscous effects are significant to the overall flow structure. As canard deflection is increased, the
secondary separation line on the canard moves inward reflecting the upward and inward shift of the
canard vortex. In all three cases, the secondary separation line forms near the apex of the canard while
its formation on the wing inboard is inhibited. At this angle of attack, the formation of the wing vortex
is delayed until outboard of the canard-tip span location.

Figure 3.25 illustrates the effect of canard deflection on wing surface pressure at 35, 55 and 75 per-
cent semispan. For clarity, the upper surface pressure curves are indicated (U). As canard deflection is
increased from 0 to 10 deg, the near-leading-edge lower surface pressure at 35 percent span transitions
from positive to negative values. At §; = 10 deg, a strong suction peak exists on the lower surface,
indicating the possibility of a wing vortex on the wing lower surface. Furthermore, high upper surface
pressures at 35 percent span are clearly indicative of a decrease in local angle of attack for the inboard
wing with increasing canard deflection angle. The loss of wing lift due to these pressure changes was
shown previously in figure 3.13(b). Towards the outboard stations, figure 3.25 shows that the effect of
canard deflection on surface pressure is minimal.

To visualize the effect of canard deflection on the canard-wing vortex interaction, crossflow contours
of total stagnation pressures are given in figure 3.26 for §. = 5 deg and 10 deg. The crossflow contours
are shown at x/¢ = 2.0. 2.8 and 3.5 as measured from the fuselage nose. The relative primary vortex
strengths are indicated in the figure by the approximate total pressure loss in the vortex core. For
§. = 5 deg (fig. 3.26(a)). there are canard primary (C1), canard secondary (C2), and wing primary
(W1U) vortices over the upper surfaces of the canard and wing. The distortion of the canard primary
vortex at x/¢ = 2.8 is due. in part, to the canard secondary vortex.

At &, = 10 deg (fig. 3.26(b)). an additional wing primary vortex (W1L) forms and is visible on
the wing lower surface (x/¢ = 2.8). This vortex causes the suction peak on the lower surface of the
wing observed earlier in figure 3.25 and would generally be considered an unfavorable effect. At these
flow conditions. there is a transition from negative to positive effective wing angle of attack, aeyss, from
the wing-root to wing-tip locations. At the last station, x/¢ = 3.5, the wing flowfield structure for the
8. = 10 deg case includes two wing primary vortices (upper and lower) as well as the canard primary
vortex.

The mutual interaction between these vortices is an important factor in wing performance and is
complex in nature. A comparison of the relative position of the canard vortex between x/¢ = 2.8 and
3.5 in figure 3.26 shows that the trajectory of the canard vortex is influenced by the wing upper-surface
vortex. For two co-rotating vortices (canard and wing primary), each with a position and counter-
clockwise rotation as shown in the figure, the wing vortex induces a relative inward motion of the
canard vortex.
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The influence of the wing vortex on the canard vortex trajectory is more clearly visualized in
figure 3.27, which illustrates the upper surface canard and wing vortex systems for 6. = 5 deg and
10 deg. Crossflow contours of total stagnation pressure are shown at selected streamwise stations. As
shown earlier in figures 3.24 to 3.26 for both §. = 5 deg and 10 deg, the formation of the wing vortex
on the wing upper surface is inhibited by the canard downwash until outboard of the canard-tip span
location. The difference in the canard primary and secondary vortex strengths between the two &, cases
is qualitatively observed. In each case, as the canard primary vortex is convected over the wing upper
surface, the wing primary vortex in the outboard region clearly modifies the canard vortex trajectory

inward.
Figure 3.28 shows a perspective view of the overall flowfield for the configuration at @ = 4.27 deg
and 6. = 10 deg. The darker region over the canard upper surface indicates low pressure induced by

the canard vortex. The particle traces released near the wing root and towards the wing tip show the
formation of the leading-edge vortices on both the upper and lower surfaces.

3.4 Effect of Canard on Wing Vortex Breakdown

The potential for a canard to delay or eliminate wing vortex breakdown is of significant interest and has
been the topic of numerous experimental studies (refs. 19, 21, 53, and 54) and a recent numerical study
(ref. 55). By comparing vortex lift theory with experimental results, Gloss and Washburn (ref. 19)
found that wing vortex burst occurs at o =~ 13 deg for the current canard-off case. For the undeflected
mid-canard case, their study indicated no evidence of wing vortex burst for angles of attack up to at
least 20 deg.

Figure 3.29 shows a crossflow-plane visualization of the predicted wing vortex for the canard-off
case at three angles of attack. At the higher angles of attack, the resulting increased vortex strength
and relative shift of the core location is observed in the normalized total pressure contours. The
development of the secondary vortex is also noted. The corresponding off-surface particle traces for the
canard-off cases are shown in figure 3.30. Evidence of vortex burst in the computational simulation is
observed at = 12.38 deg. Crossflow-plane visualization of scaled axial velocity contours in figure 3.31
serves to confirm the presence of predicted vortex breakdown over the wing for the canard-off case.
Reversed axial flow in the core of the primary vortex is identified (ref. 56) as a qualitative indication
of vortex breakdown. and is observed in figure 3.31. From figure 3.30, the wing vortex burst location
appears to be near the trailing edge of the wing and indicates that the computed angle of attack for
vortex burst is approximately 12 deg, which is within reasonable agreement with the experimental
observations (ref. 19).

Computed particle traces for the undeflected mid-canard case at &« = 12.38 deg are given in
figure 3.32. The lower leading-edge sweep-angle of the canard results in a canard vortex burst further
upstream of the canard trailing edge compared to the wing vortex burst relative to its trailing edge
shown earlier. Figure 3.32 shows a stable wing vortex with no evidence of wing vortex breakdown in
the presence of the undeflected mid-canard. Although not computed directly for this study, the results
shown in Secs. 3.2 and 3.3 indicate that wing vortex breakdown is quite possible given certain canard
vertical positions and deflection angles.

The good comparisons with the experimental data for both the canard-on and canard-off cases at
a = 12 deg and the corresponding canard-off vortex burst location near the wing trailing edge show
that the computed relative effects on vortex breakdown location and behavior in the presence of the
canard are accurate. However, it is noted that vortex breakdown is generally an unsteady phenomenon
and steady-state computations downstream of the burst location may be suspect. To perform a detailed
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Figure 3.16. Computed upper surface pressure contours for the wing-body configuration
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Figure 3.17. Computed upper surface flow patterns for the wing-body configuration with
and without mid-canard. M., = 0.90, Re: = 1.52 million.
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Figure 3.20. Crossflow plane visualization of normalized total pressure contours for high-
and low-canard configurations. M., = 0.90, a = 4.27°, Re: = 1.52 million.
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Figure 3.22. Schematic of the canard and wing vortex trajectories for the low-canard con-
figuration.
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Figure 3.23. Perspective view of normalized total pressure contours for the low-canard
configuration. M, = 0.90, « = 8.55°, Re; = 1.52 million.
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Figure 3.24. Effect of canard deflection. é.. on surface flow patterns. M, = 0.85,
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pressures indicated by U). M, = 0.85, 0 = 4.27°, Re; = 2.82 million.
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Figure 3.26. Crossflow plane visualization of normalized total pressure contours for canard
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Figure 3.27. Perspective views of upper surface canard-wing vortex structure for canard
deflections of 6. = 5° and 10°. M., = 0.85,a = 4.27° Re- = 2.82 million.
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Figure 3.28. Perspective view of computed surface pressures and simulated particle traces
for 6, = 10°. Mo, = 0.85,a = 4.27°, Re; = 2.82 million.
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Figure 3.29. Crossflow plane visualization of normalized total pressure contours of the wing
leading-edge vortex for the canard-off case. M., = 0.90, Re; = 1.52 million, z/¢ = 3.6.
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Figure 3.30. Off-surface particle traces of the wing vortex for the canard-off case.
M, = 0.90, Re; = 1.52 million, z/¢ = 3.6.
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Figure 3.32. Off-surface particle traces of the canard and wing vortices for the canard-on
case. M., = 0.90.a = 12.38°, Re; = 1.52 million.
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Chapter 4

Effect of Fixed Canard on Unsteady
Aerodynamics

The effects of fixed canards on the unsteady longitudinal aerodynamics of the canard-wing-body con-
figuration are presented in this section. As outlined earlier in the Introduction, many benefits of
canards are realized during maneuver and other dynamic conditions which result in highly unsteady
aerodynamics. In such conditions, the fixed canard has a pronounced influence on the unsteady forces.
moments. and ultimately the performance and stability of the configuration.

Computational simulations solving the time-accurate Reynolds-averaged Navier-Stokes equations
are used to study the effects of the canard on the pitch-up ramp motion and pitch oscillations of
the canard-wing-body configuration. All fixed canard simulations in this section are performed for
the undeflected mid-canard configuration. Comparisons are made with available experimental data
(ref. 24), and numerical convergence is demonstrated through spatial and temporal refinement studies.

The results of the simulations are used to study the unsteady forces and moments due to the canard.
and the unsteady canard-wing vortical flowfield. Ultimately. in section 4.3, the capability of utilizing
high-order CFD for configuration stability evaluation is demonstrated through a dynamic stability
analysis (derived in sec. 2.7) of the time-accurate pitch-oscillation predictions.

4.1 Pitch-Up Ramp Motion

Results are presented to provide the analyses of the unsteady canard-wing-body flowfield associated
with pitch-up ramp motions. All unsteady results in this section are computed at My = 0.90 and a
Reynolds number based on the mean aerodynamic chord of the wing (Reg) of 1.52 million. Convergence
of the unsteady flowfield is verified using both spatial and time-step refinement studies.

All unsteady canard-wing-body results are computed for a from 0 deg to either 12.83 deg or 15 deg
and for non-dimensional pitch rates (defined by A, = G&/Us) of 0.05 and 0.10. Ramp motions are
started from converged steady-state solutions at an initial angle of attack (a;) and held at the final
angle (ay) for a fixed length of time. The pitch axis of the ramp motion and the pitching moment
results are taken from the model c.g. location shown in figure 1.4.

A typical ramp motion from o; = 0 deg to ay = 15 deg is illustrated in figure 4.1. In order
to directly compare unsteady results at different pitch rates and steady-state results. time (t) is given
in degrees. During the ramp motion (0 deg < ¢t < 15 deg) a and t are equal (@ = t). However, for
¢t > 15 deg. o is held constant at 15 deg (o = 15 deg or ay). It is noted that during the ramp motion.
« increases linearly as a function of time. Consequently, the ramp motion has an impulsive start and
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stop which significantly influences the unsteady results. (Note that the conversion to physical time can
be easily obtained using the definition A, = &¢/Ux and replacing & with Atrqq/Atsec.)

4.1.1 Aerodynamic performance

Computed time histories of lift, drag and pitching moment for the configuration, with and without
canard, undergoing a ramp motion (pitch rate, A, = 0.10) are illustrated in figure 4.2. Computational
and experimental steady-state results are also given for the corresponding angles of attack. The lift
curves of figure 4.2 show a significant lift increase for the unsteady canard-on case. Early in the motion
(t < 4 deg), the unsteady canard-on lift is slightly lower than the canard-off lift due to the pitch-rate
effects of the configuration. Since the entire canard is forward of the pitch axis, there is an initial loss
of lift on the canard at the start of the ramp motion (¢ = 0 deg). As the ramp motion continues, the
canard-on case exhibits increased lift over both the canard-off and steady-state canard-on cases.

The time histories of drag coefficient show that at a given instantaneous angle of attack, there
is higher drag for the canard-on case. However, by replotting the drag resulits of figure 4.2 in drag
polar form, figure 4.3 shows that the unsteady canard-on case exhibits improved dynamic lift-to-drag
performance at the higher angles of attack.

The pitching moments given in figure 4.2 also illustrate the significant influence of the fluid virtual
(or apparent (ref. 57)) mass at the beginning (¢ = 0 deg) and end (¢ = 15 deg) of the ramp motion.
The virtual mass acts to counter the acceleration of the body and, therefore, causes a rapid nose-down
pitching moment at ¢ = 0 deg and a nose-up moment at ¢ = 15 deg. Beyond t = 15 deg, the lift,
drag and pitching moment values converge toward the steady-state @ = 15 deg result.

The effect of pitch rate on lift for the canard-on case is given in figure 4.4 for A, = 0.10 and 0.05.
Note that since comparisons are made at instantaneous angles of attack during the ramp motion (t in
deg), the physical time (tsec) between the two pitch rates differ by a factor of two. Figure 4.4 shows
that the lift of the canard configuration is increased at the higher pitch rate throughout the ramp
motion. Further into the ramp motion (¢ > 10 deg), the pitch rate and total lift are approximately
proportional at given angles of attack.

Better insight into the dynamic loads produced by the ramp motion can be attained by examining
the separate component regions of the geometry. Similar to the steady-state component results given
earlier, the canard region consists of the canard and the body forward of the wing leading-edge root
location (fore-body). The wing region consists of the wing and the remaining aft-body (not including
the sting).

Time histories of the canard and wing region lift contributions for the 4, = 0.05 ramp motion
are illustrated in figure 4.5. Computed steady-state lift coefficients are also given for reference. By
definition, the total configuration lift is the sum of the canard and wing region lift. The effects of the
fluid virtual mass are evident at both a; = 0 deg and ay = 15 deg. Due to the relative locations of
the canard and wing to the pitch axis, there is an initial increase in wing region lift and a decrease in
canard region lift at a; = 0 deg. These trends are then reversed at oy = 15 deg.

Figure 4.5 shows that, in comparison to the steady-state results, there is a net loss of lift for the
canard throughout the ramp motion. The increased lift for the total configuration during the ramp
motion is due to the large increase in the lift of the wing. Although the canard-wing flowfield is highly
non-linear and complex in nature, it can be quite useful to qualitatively describe the effects of the
unsteady motion in terms of simplified linear theory. In linear theory, the lift of the wing or canard can
be written as the sum of the static lift (C,«), the lift due to pitch or quasi-static lift (Cr_q), and the
unsteady lift (Cp, &). The terms Cp,, Cr . and Cp, are the stability derivatives (0C /0a)o. (0CL/8q)o
and (9CY,/0d)g. respectively: q is the angular velocity of the configuration about the pitch axis. The
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notation ()¢ indicates that partial derivatives are evaluated assuming the disturbance quantities are
zero. Note that for the ramp motion, q = &.

For the canard or wing, the lift contribution due to pitch is represented in the CL, and Cp, terms.
The loss of canard lift is primarily due to the canard location forward of the pitch axis which, if
described by linear stability theory, causes a large negative contribution to Clesnarq from the Cp g
term for high pitch rates. The directions of the induced velocities due to pitch are given schematically
in figure 4.5 as well. After the ramp motion stops (t > 15 deg), the wing region lift contribution
converges to the steady-state result much more slowly than the canard region lift. Results shown in
section 4.1.3 indicate that the canard-wing vortex interaction is a significant factor in this phenomenon.

4.1.2 Spatial and temporal convergence

To confirm the convergence and accuracy of the pitch-up ramp motion computations, time-step and
grid refinements are performed for the 4, = 0.05 ramp case presented earlier in figure 4.5. Figures 4.6
and 4.7 show the effect of time-step size (At in deg) on the unsteady lift curves near ¢t = 0 deg and
t = 15 deg. respectively, for the component regions of the geometry. In the previous computations
presented in this section, At = 0.0025 deg was used.

From figure 4.6, it is clear that with decreasing time-step size, the time-accurate solutions converge
quickly. In fact, even when using a larger step size, the lift curves compare favorably for ¢ > 0.1 deg.
Figure 4.7 shows that, after the ramp motion has stopped, the transient solution is adequately converged
in time using At = 0.0025 deg.

Spatial accuracy is demonstrated in figure 4.8 by the favorable comparison between baseline and
refined grid solutions of component lift curves. The refined grid contains over 1.7 million points in
the flowfield and was used extensively in Chapter 3 for the steady-state study. Figure 4.8 shows that.
with the refined grid, slightly higher lift coefficients are predicted due to the improved resolution of the
canard and wing leading-edge vortices. The remaining analyses of the unsteady canard-wing vortex
interaction are performed using the refined grid.

4.1.3 Canard-wing vortex interaction

An analysis of the canard-wing vortex interaction provides further understanding of the complex flow-
field that produces the unsteady load characteristics of the ramp motions shown earlier. Computations
are performed for the canard-wing-body configuration undergoing a ramp motion of a; = 0.00 deg to
ay = 12.83 deg and at a pitch rate of A, = 0.05. Comparisons are also made with the corresponding
steady-state results.

The steady and unsteady ramp motion results are summarized in figures 4.9 and 4.10, respectively,
which show instantaneous streamlines released on the upper surfaces of the canard and wing. Positions
As. Bs. and C,, as indicated in figure 4.9, correspond to steady-state & = 4.21 deg. 8.55 deg, and
12.83 deg, respectively. Similarly, during the ramp motion (fig. 4.10), positions A, B, and C correspond
to instantaneous a = 4.21 deg. 8.55 deg. and 12.83 deg. The ramp motion stops at ay = 12.83 deg
and the configuration is held fixed for all remaining time (¢ > 12.83 deg). Time-accurate transient
results are given for t > 12.83 deg at instances D, E, and F. The a vs. time plot given in figure 4.10
illustrates the relative time instances of the ramp motion (A~ F). Corresponding upper surface pressure
contours for the steady and unsteady cases are given in figure 4.11 for the same instances during the
ramp motion as in figures 4.9 and 4.10 (4, — Cs and A - C, respectively).

A comparison between the steady and unsteady results shows significant differences in the char-
acteristics of the canard and wing vortices during the early portion of the ramp motion. Steady and
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unsteady case total pressure contours at a crossflow plane of z/¢ = 3.6, as measured from the
body nose, are given in figure 4.12 for these same angles of attack. As observed in figures 4.10, 4.11,
and 4.12(b), a delay in canard vortex formation occurs for the unsteady case which correlates with the
loss of canard lift due to the pitching motion (fig. 4.5). For the steady case, figure 4.12(a) shows the
presence of the convected canard vortex, even at the lower angles of attack. Differences between the
steady and unsteady wing vortices are also noted in figure 4.12. During the ramp motion, the increased
strength of the wing vortex (fig. 4.12(b)) contributes to the increased lift of the wing portion observed
earlier in figure 4.5.

For the current ramp motion, as the configuration reaches oy, the motion stops. Figure 4.10 shows
the formation of the canard vortex and, at later times, evidence of canard vortex breakdown. Total
pressure contours in figure 4.13 illustrate the transient vortical flowfield of the canard (z/¢ = 2.0) and
wing (z/¢ = 3.6) once the ramp motion has stopped. The development of the canard vortex, which
was inhibited during the early portion of the ramp motion, is clearly observed. The canard vortex
convects downstream and the changes in canard lift and downwash influence the characteristics of the
wing vortex. As time increases from instances D to F (fig. 4.13), the canard-wing flowfield approaches
the steady-state results illustrated earlier in figure 4.12(a).

Although the canard vortex forms rapidly once the ramp motion has stopped, figure 4.13 shows that
the increasing strength of the canard vortex, its subsequent convection downstream, and its interaction
with the wing vortex occur more slowly. As also observed earlier in figure 4.5, it is evident that
the time scale is considerably larger for the wing than the canard to reach a relatively steady-state
condition. Although some unsteadiness remains in the flow due to the breakdown of the canard vortex,
the time-accurate results indicate a relatively stable flowfield for large time (¢ >> 12.83 deg).

4.2 Pitch Oscillation

Results of pitch-oscillation simulations are presented to understand the unsteady flowfield, provide
analyses of the canard-wing-body dynamic stability characteristics and to evaluate CFD accuracy and
efficiency issues in predicting stability parameters. In order to match experimental test conditions
(ref. 24) for the dynamic stability analvsis, unsteady results are computed at M, = 0.70 with the
Reyvnolds number based on the mean aerodynamic chord of the wing (Rez) of 3.05 million.

Unsteady computations are performed for the mid-canard configuration undergoing pitch oscilla-
tions about the pitch axis (shown earlier in fig. 1.4). Computations are made at mean angles of attack.
. of 0 to 16 deg and a pitch amplitude, A, of 1.0 deg. A reduced frequency, as defined by k = 22;
of 0.236 radians is used in the majority of the computations.

The computed time histories for the lift and moment coeflicients are given in figures 4.14 and 4.15,

respectively, as a function of non-dimensional time. wt. Each case was computed for three full cvcles
of oscillation about a mean angle of attack of 4 deg, with the time histories of the latter two cycles
shown in the figures. The angle of attack, with the appropriate scale on the right vertical axis, is given
in each figure for reference.

A comparison of the lift time histories in figure 4.14(a) shows that the canard-on and canard-off
cases exhibit similar trends. The amplitude of the oscillation in lift is slightly higher and the average
lift coefficient is slightly lower for the canard-on case. Figure 4.14(a) also shows no significant phase
shift for the total lift due to the canard. A breakdown of the lift time histories into component regions
is given in figure 4.14(b) for the canard-on case. As with the pitch-up ramp cases given earlier, the
canard and wing regions include the fore- and aft-body portions. respectively. Figure 4.14(b) shows
that significant phase differences exist between the canard and wing lift curves. In fact, the wing
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lift is shown to lead the pitch motion while the canard lift appears to lag. Previous results given in
section 4.1 demonstrated that the lead and lag in wing and canard lift curves is primarily caused by
the induced velocities due to the rapid pitch motion. A comparison of figures 4.14(a) (canard-off) and
4.14(b) (wing lift) also shows that the presence of the canard causes a phase shift in the wing region
lift curve. The resulting total lift for the canard-on case slightly leads the pitch oscillation.

The time histories of canard-on/off total and canard-on component pitching moments are given in
figures 4.15(a) and (b), respectively. Figure 4.15(a) shows that the canard-on case exhibits a higher
average nose-up moment. In contrast to the total lift curves of figure 4.14(a), a more significant
phase shift between canard-on and canard-off total moment curves is also noted. The breakdown into
components of the moment contributions (fig. 4.15(b)) illustrates the large phase differences between
the canard and wing region moments. Due to the forward position of the canard, the nose-up pitching
moment of the canard results in a significant nose-up shift of the total moment curve.

In order to isolate the effects of the canard on the amplitude and phase of the lift/moment curves,
a plot of the change in lift/moment as a function of the change in angle of attack is given in figure 4.16.
In both the lift (fig. 4.16(a)) and moment (fig. 4.16(b)) curves, the change in lift/moment is taken from
the average lift/moment coefficients for the respective canard-on or canard-off cases. The direction of
the curves are also indicated in the figure. From figure 4.16(a), the larger oscillation amplitude and the
minimal phase change of lift coefficient for the canard-on case is more clearly observed. Figure 4.16(b)
shows the significant phase shift in moment coefficient for the canard-on case.

Further insight into the energy balance related to the motion of the configuration can be gained
by integrating the pitching moment curves of figure 4.16. For the co-located moment center and pitch
axis, an evaluation of

W, = ?( Cr(@)da (4.2 - 1)

for a single cycle represents the amount of nondimensional work done by the fluid due to the motion
of the configuration. A similar analysis for roll oscillations of delta wings has been performed in a
previous computational study (ref. 58). For the pitching moment curves of figure 4.16(b), which have a
counter-clockwise sense, an evaluation of equation 4.2-1 yields Wy <0 indicating that work (or energy)
is imparted to the fluid by the pitch oscillation of the configuration. Therefore, the configuration is
expected to be positively damped in pitch. Furthermore, the apparent increased area contained within
the canard-on moment curve (fig. 4.16(b)) indicates that more work is imparted to the fluid for the
canard-on case. leading to a higher damped condition.

The periodicity of the oscillatory motion is demonstrated with the plot of lift and moment as a
function of instantaneous angle of attack given in figure 4.17. The time-accurate computations are
started from converged steady-state solutions at am. Figure 4.17 shows that lift and moment time
histories reach a periodic oscillatory response within 2-3 cycles. A Fourier analysis was also performed
on the second and third cycles of the oscillatory motion and the results showed less than 0.5 percent
difference between the cvcles in computed Fourier coefficients. Therefore, for the current configuration
and flow conditions. the second cycle of oscillation is sufficiently accurate to perform the detailed
dynamic stability analysis.

4.3 Dynamic Stability

A comparison between the lift/moment curves and the appropriate Fourier series using the first three
Fourier coefficients (commonly referred to as ag.a:. and by) is given in figure 4.18 for the canard-on
configuration. The coefficients were determined from a Fourier analysis of the computed second cycle
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and the excellent agreement confirms that the higher-order terms can be neglected. These coefficients
are then scaled with A and Ak as described in section 2.7 to obtain the corresponding dynamic stability
parameters.

Figure 4.19 shows a generally favorable comparison between the computed and experimental (ref. 24)
dynamic stability parameters for the canard-off case at various mean angles of attack (am,) and an
amplitude, A = 1.0 deg. The stability parameters based on normal force are given in figures 4.19(a)
and (b) as the pitch rate and pitch displacement parameters, respectively. Damping-in-pitch and
pitch-oscillatory stability, which are based on pitching moment coefficients, are given in figures 4.19(c)
and (d), respectively. In addition, results from fine grid computations at two different a,, are given in
figure 4.19 and show improvement in the damping-in-pitch parameter (fig. 4.19(c)) at o, =~ 16 deg. For
moderate angles of attack (o < 10 deg), both computations and experiment predict positive damping,
(Cmg+Cm,) < 0in figure 4.19(c), and positive oscillatory stability, (Crm,, —k*Crm,) < 0in figure 4.19(d),
for the canard-off configuration.

4.3.1 Effect of canard

The canard is expected to have a pronounced effect on the dynamic stability of the wing-body con-
figuration. Results from Chapters 3 and 4 on this configuration have shown that the close-coupled
canard has a large influence on both the steady-state and unsteady wing aerodynamics. The effect
of the mid-canard on longitudinal dynamic stability parameters is summarized in figure 4.20. Each
data point on the curves represents the predictions at a mean angle of attack of a,, and an amplitude,
A = 1.0 deg.

Figure 4.20 shows that the presence of the canard significantly changes the dynamic stability charac-
teristics of the configuration. In particular. the pitch-rate parameter in figure 4.20(a) shows an increase
throughout the mean angle-of-attack range, while the pitch-displacement parameter (fig. 4.20(b)) shows
a dependence on angle of attack for the effect of the canard. For the pitching moment based parameters
(figs. 4.20(c) and (d)), the computations show an increase in damping and a decrease in longitudinal
stability with the canard.

The changes in damping-in-pitch and oscillatory stability due to the presence of the mid-canard
is of particular interest and is again summarized in figure 4.21. Differences between canard-on and
canard-off stability parameters are shown in figure 4.21 with the “zero-line” representing the canard-off
case. As with figure 4.20 earlier, figure 4.21 also illustrates that the canard increases the damping-in-
pitch of the configuration while reducing the oscillatory stability. The increase in damping with the
canard correlates with the earlier analysis of the fluid “work” (eq. 4.2-1) described in section 4.2 and
shown in figure 4.16(b).

For reference, the experimental data for the high-canard configuration is shown in figure 4.21.
Since there is a difference in the canard vertical positions between the computation (mid-canard)
and experiment (high-canard). the comparison with the experimental measurements is intended as a
qualitative confirmation of the computational findings. However, it is noted that the agreement with
experiment is quite favorable, except at a,, = 0 deg, where the wake of the mid-canard in the
computational model directly interacts with the co-planar wing.

The results given above are based on the computations of the canard-off and canard-on config-
urations undergoing pitch oscillations at a reduced frequency. k = 0.268. On the other hand, the
experiment (ref. 24) was conducted at a one-order-of-magnitude lower reduced frequency, k = 0.0268.
The implications of this difference and, in general, the effect of reduced frequency on predicting dvnamic
stability parameters is a topic of considerable interest and is discussed in the following section.



4.3.2 Reduced frequency

Time-accurate Navier-Stokes computations are generally restricted to small time-step sizes by accuracy
and numerical stability constraints. As a result, simulations of low reduced-frequency cases, which are
typical of small-scale wind-tunnel tests, can require extensive amounts of computer resources. The
number of iterations required for each cycle of oscillation becomes inversely proportional to reduced
frequency. Therefore. in order to improve computational efficiency, it is highly desirable to evaluate
the effects of reduced frequency on the accuracy of the dynamic stability parameter predictions.

In particular, such an evaluation can provide guidance on the highest reduced frequencies which
can be used in computational simulations for a given configuration and flow condition. When the
simulated reduced frequencies become too high, the higher-order terms of equations 2.7-1 and 2.7-7
become significant and can no longer be neglected. Furthermore, the classical assumption of linear
aerodynamic theory, from which equation 2.7-1 is based, can no longer be taken.

Figure 4.22 illustrates the effect of reduced frequency (k) on the normal force and pitching moment
coefficients as a function of angle of attack for the canard-on configuration. The mean angle of attack
is 4 deg and reduced frequency varies from k = 0.268 to 1.072. The increase in amplitude and shift in
phase due to increasing k is observed in figures 4.22(a) and (b) for both the normal force and pitching
moment coefficients, respectively.

From the dynamic stability analysis, the effect of k on the damping-in-pitch and pitch oscillatory
stability parameters is given in figure 4.23 for the canard-on case. For clarity, the reduced frequency
(horizontal axis) is plotted as the inverse of k (1/k) on a log scale. The experimental values are given
at the actual reduced frequencies (k) reported in the wind-tunnel tests. Figure 4.23 shows that the
dynamic stability parameters are accurately computed for a wide range of reduced frequencies. In fact,
for damping-in-pitch, a computed reduced frequency which is up to 1.5 orders-of-magnitude higher
than the experimental value continues to yield accurate stability parameter predictions. In the present
study. a reduced frequency of k = 0.268 is utilized and allows for an order-of-magnitude reduction
in the required computational time. For dynamic stability evaluations in general, a similar study on
the sensitivities to reduced frequency has the potential to reduce computational expenses by orders of
magnitude.
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Figure 4.1. Schematic of unsteady pitch-up ramp motion from o; = 0° to ay = 15°.
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motion. M, = 0.90, A, = 0.10, o; = 0°, a5y = 15°, Re; = 1.52 million.

Figure 4.4. Effect of pitch rate on canard-wing-body lift.
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Figure 4.5. Comparison of steady and unsteady component lift curves for the canard con-
figuration. My = 0.90, A, =0.05, 0, =0°, ay = 15°, Rez; = 1.52 million.
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Figure 4.6. Effect of time-step size on the unsteady component lift curves near the beginning
of the ramp motion, a;. Mee = 0.90, A, = 0.05, a; = 0°, ay = 15°, Rex = 1.52 million.
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Figure 4.7. Effect of time-step size on the unsteady component lift curves near the end of
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Figure 4.10. Upper surface instantaneous streamlines at various times for the canard-wing-
body configuration undergoing unsteady ramp motion. M,, = 0.90. 4, = 0.05, a; = 0°,
ay = 12.83°, Re; = 1.52 million.
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Figure 4.11. Upper surface pressure contours at various times for the canard-wing-body

configuration undergoing unsteady ramp motion. M. = 0.90, Ap = 0.05, oy = 0°,
ay =12.83°, Re; = 1.52 million.
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Figure 4.12. Comparison of crossflow total pressure contours between the steady and un-

steady cases at various angles of attack. M., = 0.90, A, = 0.05, a; = 0°, a5 = 12.83°,
Re: = 1.52 million.
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Figure 4.13. Crossflow total pressure contours for the transient flow after the ramp motion
has ended. M., = 0.90, 4, = 0.05, a; = 0°, oy = 12.83°, Re; = 1.52 million.
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Figure 4.14. Effect of canard on component lift coefficients for two cycles of oscillation.
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86



----- Canard-Off Canard-On
01—y 0.1 ermror sy e T Tt
0.05 - ] 0.05 . —
H ]
4o 4 4C. o} ]
-0.05 |- - £0.05 | - |
01 _-..‘I.AA 1 PO N S VO AN B ‘.‘I.AA.- 0.1 —.,‘ i b 4 " ) IR SR I U S T S A S Sy ]
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.8 1 1.5
Aa Aa
a) Lift coefficient b) Pitching moment coefficient
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Figure 4.17. Lift and pitching moment curves for the canard-off configuration (started from
steady-state solutions with three cycles of oscillations shown). M., = 0.70, k = 0.268,
o, =4.0° A =1.0°, Re; = 3.05 million.
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Chapter 5

Unsteady Aerodynamics of Moving
Canards

Many canard-configured aircraft. including several mentioned in Chapter 1. utilize moving canards
for longitudinal stability. pitch control and aerodynamic performance. In order to understand the
influence of moving canards and to demonstrate the current capability to predict the resulting unsteady
Aowfield. time-accurate Navier-Stokes simulations are solved for the configuration undergoing pitch-up
and oscillatory canard motions. Details of the grid generation, boundary conditions and zonal interfaces
for the moving canard cases are found in sections 2.4, 2.5, and 2.6, respectively. The freestream flowfield
conditions used in the canard motion studies are Mo, = 0.85 and a Reynolds number based on the
mean aerodynamic chord of the wing (Reg) of 2.82 million. These conditions match those used for the
steady-state canard deflection studies (secs. 3.2.2 and 3.3.3), thereby allowing for the direct comparisons
and observations between fixed and moving canard results.

5.1 Canard Pitch-Up Ramp Motion

The deflections of the canard during the pitch-up ramp motions are illustrated in figure 5.1. All canard

pitch-up cases begin with an initial canard deflection (&,) of 0.0 deg, and final canard deflections (é.;)

of 5.0 and 9.25 deg. As with the pitch-up motions of the entire fixed-canard configuration (sec. 4.1).

the canard motions begin and end instantaneously. Various canard pitch rates (Ape) are simulated

i this sectio\n‘lv The time histories of force and moment are again given in non-dimensional time
t g J

(trqq = =223 Note that during the portion when the canard is moving, 6. = t.

5.1.1 Unsteady lift and pitching moment

The time histories of lift and pitching moment coefficients are given in figure 5.2 for the canard con-
ficuration at @ = 4.27 deg. Canard deflection angles as a function of non-dimensional time (t) are
also indicated in the figure. Starting from a steady-state condition at 6. = 0.0 deg, the canard begins
to pitch up at time. ¢ = 0 deg with a pitch rate of A,e = 0.05. The lift curve for & = 4.27 deg
(fig. 5.2(a)) shows that an increase in total lift is purely transitory during the unsteady aerodynamic
portion of the canard motion. In fact, the initial total lift at ¢ = 0 deg (6 = 0.0 deg) and the
final total lift for ¢ > 8 deg (6. = 5.0 deg) are basically unchanged. This result is consistent with the
steady-state computations at various fixed canard deflections shown earlier (fig. 3.14), which illustrated
an increase in canard lift and a decrease in wing lift as a function of increasing canard deflection angles.
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Figure 5.2(b) shows the effects of the canard motion on the pitching moment coefficients for the
configuration. Steady-state results of section 3.2 found that the wing portion pitching moment is
relatively insensitive to the various fixed canard deflection angles. The results in these two figures
indicate that this effect is extended to unsteady canard ramp motions as well. For the configuration in
this study, the pitching moments for the entire configuration at o = 4.27 deg (fig. 5.2(b)) is purely
dependent on the canard portion contributions.

Although the pitching moments of the configuration undergoing canard pitch-up motion are very
similar to the corresponding steady-state characteristics, the unsteady nature of the lift curve is of
particular interest. Figure 5.2(a) also shows that although the canard portion lift responds almost
immediately to the canard pitch-up motion, a significant delay is observed before the wing portion lift
responds to the effects of the canard motion. This delay is due to the time required to convect the
effects of the canard downstream to the wing. The length of the delay observed in the figure, which is
on the order of At ~ 3 deg (or 0.05 rad.), correlates well with the pitch rate of A, = 0.05 for this
angle-of-attack case. In essence, for A,, = 0.05, At = 0.05 rad. is the length of time for a freestream
fluid particle to travel the distance ¢, which also represents the approximate average distance between
the canard and the wing. The transient increase in total lift is primarily due to this delay in the wing’s
response to the increase in canard lift.

The transient nature of the configuration lift curve and, specifically, the delay observed in the wing
response is a direct function of the canard pitch rate. Figures 5.3 and 5.4 show the effects of canard
pitch rate, Apc, on lift and moment coefficients, respectively, for the configuration at o = 4.27 deg.
As pitch rate is increased, both the magnitudes of the canard lift and the non-dimensional time delay
in the wing response increase (figs. 5.3(b) and (c)). The combination of these two effects produces a
higher peak lift coefficient for the entire configuration (fig. 5.3(a)). The results of figure 5.4 illustrate
that canard pitch-rate effects on pitching moment are considerably less significant than for lift.

For the higher pitch rate cases given in figures 5.3 and 5.4, a constant physical time-step size results
in a higher non-dimensional time step. However, refining the step sizes can be used to demonstrate
temporal convergence. Figure 5.5 shows the effect of time-step size on the lift and pitching moment
predictions of the computations performed for A, = 0.20. The excellent comparison between the
computational simulations at various step sizes, particularly during the transient period after the canard
motion has stopped (t > 5 deg), confirms the adequate time-step resolution for the canard pitch-up
ramp cases.

5.1.2 Canard-wing vortex interaction

The results given in the preceding section can be further understood by examining the canard-wing
vortex interaction during the canard pitch-up maneuver. For easier visualization of stronger vor-
tices, a canard pitch-up simulation is performed for the configuration at the higher angle of attack

of a = 8.0 deg. Figure 5.6 illustrates the time histories of lift and pitching moment coefficients
for this case. Similar to the lower angle-of-attack case given earlier in figure 5.2, the current case at
a = 8.0 deg shows a transitory increase in total lift which is due to the delay in wing lift response.

Figure 5.6(b) also shows that pitching moment characteristics during the canard motion are similar to
the lower angle-of-attack case.

Comparisons of total pressure contours at constant streamwise locations are given in figure 5.7
for the instant when the canard is deflected at §. = 5.0 deg during the canard pitch-up motion
(Ape = 0.05). The steady-state results of the static canard at the corresponding freestream condition
and canard deflection angles are also shown in the figure. The crossflow total pressure contours illustrate
a slightly weaker canard vortex formation for the unsteady cases (xr/¢ = 2.0) in comparison to the
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steady cases. The weaker canard vortex at a given deflection angle is primarily due to the induced
velocities at the canard leading edge from the canard rotation about its pitch axis. Further downstream
at the same instant in time, the weaker canard vortex and the effects from convection of the canard’s
influences produce a less developed canard vortex over the wing surface (z/¢ = 2.8 and 3.5). After
the canard motions stops. the effects of the canard vortex on the wing flowfield will approach the
steadv-state results.

To better visualize the effects of the wing flowfield development, the time scales and canard effects
are increased by starting with the lower angle of attack case (@ = 4.27 deg) and continuing the
canard pitch-up motion to a higher deflection angle. Figure 5.8 shows the lift and pitching moment
curves for the configuration undergoing a canard pitch-up from é., = 0 degtoé;, = 9.25 deg with
a non-dimensional pitch rate of A, = 0.05. The increase in total lift and the delay in wing response
are both clearly evident in figure 5.8(a). For the canard pitching to é. = 9.25 deg. the downwash of
the canard causes the wing to generate very little lift at the positive a of 4.27 deg. This effect was
also observed in the deflected static canard cases of section 3.2.2, which showed steady-state vortices
on both the wing upper and lower surfaces.

Traces representing instantaneous streamlines at seven different times are given in figure 5.9 for the
be; = 9.25 deg canard pitch-up case. As illustrated in the legend of figure 5.9, the first four instances
in time (A-D) are during the canard motion (6. < é.,), and the last three instances (E-G) are during
the transient phase as the flowfield approaches a steady-state condition. Visualization of the canard
and wing vortices is performed by starting the traces near the upper- and lower-surface leading edges
of the wing, and the upper-surface leading edge of the canard.

As the canard deflection begins to increase, minimal initial influence of the canard on the wing
vortex structure is shown (time positions A and B). As the canard deflection approaches b = 7 deg.
time position C shows the initial formation of a leading edge vortex on the wing lower surface. Just
before the canard motion stops at time position D, the wing lower surface vortex becomes more or-
ganized, and the canard leading-edge vortex shows evidence of vortex breakdown. Time positions
E-G show the completion of the vortex structure development while the canard deflection is fixed at
be = bc; = 9.25 deg. The formations of the lower surface vortex on the inboard of the wing and the
upper surface vortex on the outboard wing portion are clearly evident.

Crossflow visualizations of total pressure contours are given in figure 5.10 for the canard and wing
regions. Figures 5.10(a)-(c) correspond to time instances A-C from figures 5.9(a)—{(c) during the canard
ramp motion. In figure 5.10, the development of the canard vortex and its convection over the wing
surface is observed. Furthermore, the initial formation of the wing lower surface vortex is noted in
figure 5.10(c) (wing region) and correlates with the instantaneous streamlines of figure 5.9(c).

In order to more clearly visualize the development of the wing vortex structure, crossflow total
pressure contours are given in figure 5.11 at the same z/¢ = 3.3 for five time positions starting with
just prior to when the canard deflection angle has reached 8c,. As time increases, the development of
the canard vortex over the wing and the wing leading-edge vortices on the upper and lower surfaces
are observed. Since the contour levels of total pressure are evenly distributed, the relative strengths
of these vortices are indicated in figure 5.11 as an approximate loss in total pressure at the vortex
cores. Although at slightly different conditions, a qualitative comparison can also be made with the
static canard deflection cases given in figure 3.26, where the canard, wing upper surface and wing lower
surface vortices were also observed in the wing flowfield. As illustrated earlier in figures 5.2 and 5.6 of
section 5.1.1, and currently in figures 5.9 and 5.11, the time required for the full development of the
wing flowfield and vortex structure allows for the transient increases observed in the total lift of the
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5.2 Canard Pitch Oscillation

The investigation of the unsteady aerodynamics of canard pitch oscillations can lead to an evaluation
of the dynamic stability characteristics of the moving canard control surface. Furthermore, previous
studies (refs. 26-28) have experimentally examined the potential of using canard oscillations to promote
wing performance in extreme maneuver conditions. Specifically, these studies explored the potential of
using high frequency canard oscillations as an active control method of delaying wing stall. Although
unsteady experiments may be able to evaluate the effectiveness of such techniques, computational
simulations are required to fully understand the physics of such unsteady flow phenomenon and, more
importantly, to optimize the use of the oscillating canard. This section will present the results of canard
pitch oscillations at the pre-stall conditions of interest in this study.

Canard pitch oscillation simulations are performed at a pitch amplitude (A.) of 2 deg, and reduced
frequencies (kc) of 1.0. Mean angles of attack for the configuration of 4.27 deg and 8.00 deg are
presented. As with the rigid-body oscillation studies of sections 4.2 and 4.3, high values of reduced
frequencies are simulated to minimize computational expense.

5.2.1 Unsteady lift and pitching moment

The effects of the oscillating canard on the configuration lift and pitching moment characteristics
are given in figures 5.12(a) and (b), respectively, as a function of non-dimensional time (w.t) for the
configuration at & = 4.27 deg. The canard deflection angles with respect to wt are also indicated
in the figure. From figure 5.12, it is evident that the time histories of the canard lift and moment are
closely in-phase with the canard oscillation. On the other hand, the wing contributions to both lift
and moment exhibit significant shifts in phase and appear to be the primary contributor to the phase
differences between the canard motion and the total lifts and moments. These effects of the oscillating
canard on the canard and wing contributions are consistent with the earlier findings of the canard
pitch-up ramp motion studies (sec. 5.1). which also found almost instantaneous canard response to
changes in deflection angle 4.

Figure 5.13 shows that a periodic time response is achieved within two cvcles of canard oscillations in
spite of the fact that the wing responses are due to the canard motions rather than direct wing motions.
Note also that the significant contributions of the wing responses to the overall phase differences in
both lift and moment arc observed in figures 5.13(a) and (b), respectively. In fact, figure 5.13(b) shows
that the phase differences between the overall pitching moment and the canard deflections are almost
entirely due to the wing response. Furthermore, it is significant to observe that the relatively small
amplitude oscillations of the canard produce relatively large wing responses in pitching moment. The
amplitude of wing responses due to the pitch oscillations are comparable to those resulting from the
much larger canard deflections of the canard ramp motion cases (fig. 5.8). Correspondingly, the wing
lift response due to the canard oscillations in figure 5.13(a) also exhibits a relatively high amplitude
for the small canard deflection angles. These results indicate that the high frequency nature of the
canard oscillations has a significant influence on the wing response characteristics, even at relatively
small pitch amplitudes.

Similar trends are observed for the lift and moment characteristics of the configuration at
a = 8.0 deg. Figures 5.14 and 5.15 show that the canard oscillation produces nearly in-phase re-
sponses for the canard region and significant phase shifts for the wing responses in both lift and pitching
moment. Amplitudes of the total configuration as well as the canard and wing region responses are
comparable to the lower angle-of-attack case.
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5.2.2 Canard and wing vortex structures

Visualizations of the canard and wing vortex structures are given in figures 5.16 and 5.17, respectively,
for the canard oscillation case of @ = 4.27 deg. For both figures. crossflow visualization of normalized
total pressure contours are shown at different wct values. as indicated in the legend at the end of cach
figure. Figure 5.16 shows that the strength and location of the canard leading-edge vortex changes
throughout the cycle. Early in the cycle (a-c), the canard vortex appears weaker and is increasing in
strength. Near the middle to the end of the cycle (d-i), the canard vortex appears to move inward
towards the root of the canard and then begins to weaken again. The effect on the wing of these
changes in the canard vortex characteristics is shown in figure 5.17. Over the stationary wing surface,
the convected canard vortex changes in strength. location and structure throughout the oscillation
cycle. Tt is noted from figure 5.17 that the wing vortex strength and location appear to be relatively
unchanged. However, further analysis of the wing surface pressures shows that the characteristics of
the wing vortex are indeed affected by the oscillating canard.

Figure 5.18 illustrates the effect of the oscillating canard on the wing surface pressures at the
55 percent and 75 percent semispan stations. Each streamwise pressure distribution curve represents
the instantaneous pressure on the wing at the same corresponding time instance (A, C, E. G. and I)
indicated earlier in figures 5.16(a)~5.17(i). On the inboard portion of the wing. the canard oscillation
clearly affects the formation of the wing leading-edge vortex. The effect on the lower-surface pressure
distribution near the leading edge indicates that the local effective angle of attack of the wing is changing
as well. Further outboard, figure 5.18 shows that there are significant changes in the upper-surface
pressure peaks which are generated by the wing vortex. Starting from the beginning of the cycle, the
suction peak weakens and appears to move aft (from A-C). Later in the same cycle, the peak moves
forward towards the leading edge as suction again increases near the end of the cycle (E-I). Although
the wing upper surface at 75 percent semispan shows considerable change, the local effective angle
of attack at this station is observed to be relatively constant from the nearly constant lower surface
leading-edge pressures.

The effects of the canard oscillation on vortex structures are given in figures 5.19 and 5.20 for the
configuration at a = 8.0 deg. At these conditions, the amplitude of the canard oscillations is a
smaller fraction of the mean angle of attack. Therefore, over the canard region (fig. 5.19), the changes
in the canard vortex characteristics appear to be more subtle than for the earlier o = 4.27 deg case.
However, results over the wing in figure 5.20 show that the convected canard vortex does indeed change
in strength and structure throughout the canard oscillation cycle. Similar to the earlier @ = 4.27 deg
case, figure 5.21 shows that the wing vortex at o = 8.0 deg. as characterized through surface pressures.
is also affected by the canard oscillations. The local effective angle of attack of the wing is again most
influenced in the inboard portion of the wing.
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Figure 5.1. Schematic of canard pitch-up ramp motion from é, = 0° to é., = 5° and 9.25°.

100 -



0.4 ———— ! — : 1 40
UL e R E e B Total it~ 35
0.3 130
0.25 325
1 0.2 —;20
0.15 115
0.1 410
0.05 15
V] J 0

0 2 4 6 8 10

time (deg)
a) Lift coefficient

0.2 T , - T - 40
0.15 : ; J3s
0.1 f: ............................ i 30
0.05 |- 125
C o 420

m : :
-0.05 - 415
0.1 . ; : 410
-0.2 :l/i N I PO l PR l PR 3 0

0 2 4 6 8 10

time (deg)

b) Pitching moment coefficient
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Figure 5.3. Effect of canard pitch rate on the time history of unsteady lift responses due to
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Figure 5.5. Effect of time-step size on unsteady lift and moment responses due to the
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Rez = 2.82 million.
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Figure 5.7. Comparison of crossflow total pressure contours between the steady and un-
steady cases at various streamwise locations for the configuration at a = 8.0° and é. = 5.0°
(unsteady case given at the instantaneous é. for ¢ = 5.0°). M., = 0.85, 4. = 0.05,
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Figure 5.9. (Part-1) Upper and lower surface instantaneous streamlines for the canard
pitch-up ramp motion from é, = 0° to é., = 9.25°. Mo = 0.85, a = 4.27°, Ay = 0.05,
Rez = 2.82 million.
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Figure 5.9. (Part-2) Upper and lower surface instantaneous streamlines for the canard
pitch-up ramp motion from ¢, = 0° to 6cf — 995° My, = 085, a=4.27° Ap) = 0.05,

Rez = 2.82 million.

109



CANARD REGION (x/c = 2.0) WING REGION (x/c = 3.3)

Canard Primary Yortex (C) /

a)t=2.33deg

b) t = 4.66 deg

~

c)t=7.00deg

Figure 5.10. Crossflow total pressure contours over the canard (z/¢ = 2.0) and wing (z/¢ =
3.3) during the canard pitch-up ramp motion from 6., = 0° to é., = 9.25°. My = 0.85,
o =427, A, = 0.05, Re; = 2.82 million.
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Figure 5.11. Crossflow total pressure contours over the wing (z/¢ = 3.3) after the canard
pitch-up ramp motion from &, = 0° to 6., = 9.25°. M, = 0.85,a = 4.27°, Ape = 0.05,
Re; = 2.82 million.
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Figure 5.15. Lift and pitching-moment curves for the configuration undergoing canard pitch
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Figure 5.16. (Part-1) Crossflow total pressure contours over the canard (z/¢ = 2.0) for the
canard pitch oscillation motion at & = 4.27°. M, = 0.85, A, = 2.0°, k. = 1.0, Re; = 2.82
million.
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Figure 5.16. (Part-2) Crossflow total pressure contours over the canard (z/¢ = 2.0) for the
canard pitch oscillation motion at a = 4.27°. M, = 0.85, A, = 2.0°, k.= 1.0, Re; = 2.82
million.
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Figure 5.17. (Part-1) Crossflow total pressure contours over the wing (z/¢ = 3.5) for the
canard pitch oscillation motion at a = 4.27°. M, = 0.85, A, = 2.0°, k. = 1.0, Re; = 2.82
million.
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Figure 5.17. (Part-2) Crossflow total pressure contours over the wing (z/¢ = 3.5) for the
canard pitch oscillation motion at a = 4.27°. Mo = 0.85, A, = 2.0°, k. = 1.0, Rez = 2.82
million.
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Figure 5.18. Effect of canard pitch oscillation motion on wing surface pressures at o = 4.27°.
My, = 0.85, A. =2.0% k.= 1.0, Re; = 2.82 million.
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Figure 5.19. (Part-1) Crossflow total pressure contours over the canard (z/é = 2.0) for the

canard pitch oscillation motion at a = 8.0°. My = 0.83, A. = 2.0° k. = 1.0, Re; = 2.82
million.
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Figure 5.19. (Part-2) Crossflow total pressure contours over the canard (z/¢ = 2.0) for the
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Figure 5.20. (Part-1) Crossflow total pressure contours over the wing (z/¢ = 3.5) for the
canard pitch oscillation motion at & = 8.0°. My = 0.85, A. = 2.0°, k. = 1.0, Rez = 2.82
million.
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Figure 5.20. (Part-2) Crossflow total pressure contours over the wing (z/¢ = 3.3) for the
canard pitch oscillation motion at o = 8.0°. M., = 0.85, A. = 2.0°, k. = 1.0, Rez: = 2.82
million.
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Figure 5.21. Effect of canard pitch oscillation motion on wing surface pressures at a = 8.0°.
M, = 0.85, A, =2.0° k.= 1.0, Re; = 2.82 million.
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Chapter 6

Conclusions

A detailed numerical investigation has been performed for the steady and unsteady flowfield about a
static and dynamic canard-wing-body configuration. Computational technology has been developed
and enhanced to perform a series of time-accurate Navier-Stokes simulations about the close-coupled
canard configuration. The computational methods presented in this study are capable of accurately
predicting the unsteady viscous flowfield for the canard-wing-body configuration with various fixed

canard positions and with moving canards.

6.1 Validation of the Computational Method

The accuracy of the simulations is demonstrated by extensive comparisons with available steady and
unsteady experimental data. Favorable comparisons with steady-state experimental surface pressures,
forces, and moments for the configuration with various fixed canard positions verify that the present
method is capable of accurately predicting the steady-state flowfield about such configurations. For
low angles of attack {up to approximately 6 deg), a relatively coarse (baseline) grid was found to be
effective in accurately computing surface pressures, forces and moments. However, a more refined
grid was shown to be critical for higher angle-of-attack cases where boundary-layer separation. strong
shocks, and vortex breakdown dominate the flow characteristics.

Comparisons of experimentally measured dynamic stability parameters with computations of the
configuration undergoing pitch oscillations also demonstrate accurate predictions of the unsteady
canard-wing-body flowfield. An analysis of the effect of reduced frequency was also performed and
demonstrates the ability to accurately predict dynamic stability with considerably higher computa-
tional reduced frequencies. As a result, significant reductions in required computational resources
allows the use of state-of-the-art computational fluid dynamics (CFD) for the prediction of dynamic
stability about conmplex canard configurations. For those cases where experimental data was unavail-
able, a spatial and time-step refinement study was conducted to verify the convergence of the unsteady

computations.

6.2 Canard-Wing-Body Steady Flowfield

For the steady-state mid-canard flowfield, the canard-induced downwash was found to weaken or delay
formation of the wing leading-edge vortex. At a = 4 deg, the formation of the wing leading-edge vortex
is delayed to the canard-tip span-line of the wing. At a = 8 deg and 12 deg, a weakened leading-edge
vortex was observed on the inboard portion of the wing. The wing vortex on the outboard span was
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shown to be influenced by both the canard vortex and the aforementioned canard downwash. The
presence of the canard was also shown to eliminate the wing vortex breakdown which was evident in
the canard-off case at a ~ 12 deg. These results confirm and provide an explanation for the canard’s
potential for delaying wing vortex breakdown which has been observed in experimental studies.

At low to moderate angles of attack, the fixed high-canard configuration exhibits improved steady-
state lift and drag over the mid-canard case. However, due to the interaction between the low-canard
vortex and the wing surface, unfavorable lift and drag characteristics for the low-canard configuration
are evident as angle of attack is increased. At low angles of attack, the low-canard vortex passes under
the wing surface and can induce lower pressures on the wing lower surface. At higher angles of attack,
the canard vortex is split by the wing surface into upper and lower vortices. Toward the outboard
wing, the wing vortex induces a large inward movement of the canard upper-vortex.

When the fixed canard is positively deflected, a pronounced effect on aerodynamic performance
parameters is observed, particularly for wing lift and configuration pitching moment. Visualization of
the canard-wing-body flowfield shows a complex flow structure consisting of several interacting canard
and wing vortices. Specifically, at significantly large canard deflection angles, effective wing angle of
attack transitions from negative (inboard) to positive (outboard) values causing the formation of both
lower and upper surface leading-edge vortices. Furthermore, due to the strength of these vortices,
secondary vortices are present indicating strong viscous effects.

These findings both correlate with, and provide an explanation for, much of the experimental
results presented in the literature. These results also suggest that detailed investigations are required
to determine optimum canard positioning for given configurations. The accurate prediction of such
steady-state effects are needed in the design and optimization of future close-coupled canard aircraft.

6.3 Canard-Wing-Body Unsteady Flowfield

To understand the predicted unsteady flowfield, an analysis of the unsteady canard-wing-body aero-
dynamics with emphasis on the canard-wing vortex interaction was performed. Dynamic conditions in
this study included rigid-body pitch-up and pitch oscillation motions of both the entire configuration
and the independent canard.

For the entire configuration undergoing pitch-up ramp motions, computations with and without the
canard showed increased dynamic lift and improved lift-to-drag ratios for the configuration with the
canard. Results also indicated the strong influence of the relative positioning of the canard and wing
to the pitch axis. For the canard located forward of the pitch axis, the ramp motion at high pitch rates
decreases the effective angle of attack of the canard and delays the formation of the canard vortex.
However. as angle of attack increases and the ramp motion ends, the canard vortex and its interaction
with the wing develops rapidly. As time increases, the configuration flowfield approaches a relatively
steady solution.

During pitch oscillations. the fixed canard was found to have a pronounced effect on the unsteady
aerodynamics associated with the wing-body configuration. Significant changes in amplitude and shifts
in phase of the lifts and moments were observed with the addition of the canard. Using the results
of the numerical pitch oscillation simulation, an analysis of the time histories of normal force and
pitching moment coefficients led to the prediction of longitudinal dynamic stability parameters. These
parameters were utilized to evaluate the effects of the canard on dynamic stability. The current study
found that the presence of the canard increases the pitch damping of the configuration and decreases
the oscillatory stability.
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The current computational method has been further extended to investigate the unsteady aero-
dynamic effects of moving canards. Both canard pitch-up ramp and pitch oscillation motions were
simulated using the developed dynamic gridding, zonal interfacing and boundary condition capabili-
ties. The canard pitch-up ramp motion simulation showed that a transient increase in overall lift was
the direct result of the time delay (or lag) in wing response from the convection of the canard ef-
fects. Furthermore, the vortex analyses illustrated the unsteady nature of the canard and wing vortex
structures, particularly with respect to the formation of the upper- and lower-surface wing vortices.

The investigation of canard pitch oscillations demonstrated that high frequency. small amplitude
oscillations can produce significant lift and moment responses of the wing. It was also observed that.
similar to the canard ramp motion results, the canard responses were nearly in-phase with the canard
motion while the wing responses showed significant phase shifts. Although the vortex visualizations
indicated minimal changes in wing vortex characteristics, analyses of the wing surface pressures showed
significant changes in the local angle of attack on the inboard wing and overall changes in wing vortex

influences.

6.4 Recommendations for Future Studies

The current study has characterized the complex steady and unsteady aerodynamic flowfield of a canard
configuration, including effects of both fixed canards at various positions and independently moving
canards. Future studies should focus on utilizing the tools and findings which have been presented
to optimize the use of canards for both cruise and maneuver aerodynamic performance. Such studies
could include, but are not limited to:

1. Optimization of fixed canard positions (vertical, longitudinal, and deflection) for trimmed cruise
performance;

2. Development of control-law based canard motions for enhanced maneuver performance:

3. Investigation of non-symmetric canard positions or motions for lateral stability and control;

4. Investigation of high-frequency canard oscillations for improved wing performance in pre- and
post-stall environments:

5. Evaluation of complete static and dynamic stability characteristics of a canard configuration for
stabilitv and controls applications; and

6. Coupled controls-fluids simulation of a dynamic maneuver condition.
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Appendix A
Governing Equations

(Note: For further details of the governing equations. numerical algorithm, and turbulence modeling,

the reader is referred to ref. 43 and the appropriate original publications which are cited.)

The governing equations solved in this study are nondimensionalized by free-stream quantities and
are transformed to the computational domain (£,7.() so as to preserve the strong conservation form
of the equations. The strong conservation law form of the Navier-Stokes equations are used for shock

capturing purposes. The equations in Cartesian coordinates in non-dimensional form can be written

as v
8Q OE OF 0G 0OE, O0F,  0G,
ot =
ot Oor Oy Oz Ox dy az
where
)
pu
Q = pv
pw
e
pu ] pU pw
5
pu” +p puv ouw
E = puv F=|p?+p G = prw
puw prw pw‘z +p
ule + p) v{e + p) w(e+ p)
0 0 0
Trx Txy Trz
E, = Re™! Tyz F, = Re™! Tyl Gu = Re™! Ty=
Tz Ty Tzz
‘81 J Y 3:
with
e = AMug + vy +wz) + 2pug
Tyy Mug + vy + w:) + 2py
Tex Mug + vy + w:) + 2pw;
Tey = Tyz = p(uy + vz)
Trz Tex — H(U: + u’x)
Tyz Toy = (v + wy)
3. "}’KPT—lal-eI d UTpg + UTzy + Wz
3y ﬂ/ﬁPr’laye] + UTyz + UTyy + WTy:
3- vPr10.er + uToy + vTsy + W
e; = ep t =05+t +w?)

(A-1)
(A—2)
(A-3)

The Cartesian velocity components u, v, and w are nondimensionalized by a~ (the free-stream
speed of sound), density p is nondimensionalized by pec and the total energy per unit volume e is
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nondimensionalized by psa2,. Pressure can be found from the ideal gas law as
p=(v—1)e—-05p(u?+ % +w?)] (A —4)

and throughout ~ is the ratio of the specific heats. Also, x is the coefficient of thermal conductivity,
 is the dynamic viscosity, and A from the Stokes™ hypothesis is —2/3u . The Reynolds number is Re
and the Prandtl number is Pr.

To enhance numerical accuracy and efficiency and to handle boundary conditions more easily, the
governing equations are transformed from the Cartesian coordinates to general curvilinear coordinates
where

= {(z.y.2.1) (A-5)

n(z.y,2.t)
= ((z,y,2.t)

b

A N
il

The resulting transformed equations are not much more complicated than the original Cartesian
set and can be written in nondimensional form as

d .~ 8 - - 9, - a . .
— —(FE-E)+—F-F)+—=(G-G,)=0 A-6
arQ+Q%( )+an( )+CK( ) ( )
where
P pU
pu ) pul + &zp
Q=J"1pv|, E=J"1 pvlU + &yp
pw pwl +&:p
e (e+p)U —&p
pV oW
) puV + nep ) puW + Cop
F=J1Y pV4+np |, G=J"'] pW+(gp (A=1T)
pujV + 1n.p [)U“’V + C;p
(e+p)V —mp (e+p)W = &p
and
U = gt + £Iu + gyv + f:u‘
Vo= o+ npu+ e 4w (A -8)
W = G +Gu + Cyl" + Cw

where U, V.and W are contravariant velocity components written without metric normalization. The

viscous flux terms are given by
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- 0 -
ExTzx + gyTry + & Tez
E,=J 'Re”! ExTye + &yTyy T &:Tyz
2oz + gyT:y + &7
L &8z + &0y + £:5: |
[ 0
NaeToez + MyTzy + NzTez
EF,=J'Re™ | naTye + MyTyy + Ty (A—-9)
NeTex T MyTay T NeTez
L 728 +77y‘3 +7:8: |
0 -
A CxTazz + Cy"'zy + (= Txz
G, = J'Re™! CaTyz + CyTyy T C:Ty=
CeTex + CyTay + (o722
CxBz + By + (8.

where the components of the shear-stress tensor and heat- flux vector in nondimensional form were
given in equation A-3. Here, the Cartesian derivatives are expanded in £. 71, ¢ space via chain-rule
relations such as

Uy = fo5 + NzUy + Cqu
Finally. the metric terms are obtained from chain-rule expansion of z¢. yp. etc.. and solved for &;. &y,
etc., to give

&2 = Jlynzc — Yczn) Ne = J(2ey¢ — Yez¢)

£y = J(zpze— TpZc) ny = J(xeze — 2oze)

£ J(xnye — ync) M= = Jyere — Teyc) (A -10)
Gz = ](y <n ~£yw7) & = —T:&r — yréy —2:&

Gy = Jlznze —Te2m) M= —TeMz = YrTly — 270z

¢: = Jlzeyn— YeZn) G = —2:C — yrly — 20C2

and
Jh = Telnzc + TeYezn + Ty¥oze — TelcZn — Tn¥e2c — T¢Ynie

In high Reynolds number flows, the viscous effects are confined to a thin layer near rigid boundaries.
In most cases. there are only enough grid points to resolve the gradients normal to the body by clustering
the grid in the normal direction. and resolution along the body is similar to what is needed in inviscid
flow. As a result, even though the full derivatives are retained in the equations, the gradients along the
body are not resolved unless the streamwise and circumferential grid spacings are sufficiently small.
Hence, for many Navier—Stokes computations, the viscous derivatives along the body are dropped. This
leads to the thin-layer Navier—Stokes equations.

The thin-layer model requires a boundary layer type coordinate system. For example. if £ and 7
directions are along the body and the viscous derivatives associated with these directions are dropped.
the terms in ¢ only are retained and the body surface is mapped onto a constant ¢ surface. As a
result, equation A-6 simplifies to

0,0 + 0 E + 0,F + 9;G = Re™'9,S (A—11)
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where

o -
BUG + G+ CBlu + (1/3)(Gaug + Gyug + Cwe)G
. (GG + Gy + Cve + (1/3) (Cerg + Gyue + Cawe) Gy
S=J7 = /1«((,.;2 * (:3 T C’?)wc - (H/3)(C~TUC + Cyrg + Gwe)C: (A-12)
{(G+ ¢+ D)05u(u® + v? + w?),
+uPr (v = 17 a?)e] + (1/3)(Cou + Gy + Gow)
X (Geug + Gyug + Cawe)

.

To generalize the coordinates of complex geometries. the thin-layer approximation can be made in
all three coordinate directions and, as a result. only cross-derivative viscous terms are neglected. It
should also be emphasized that the thin-layer approximation is valid only for high Reynolds number
flows. Very large turbulent eddy viscosities would invalidate the thin-layer assumption.
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Numerical Algorithm

As mentioned in section 2.1, the algorithm used to solve the Reynolds-averaged Navier-Stokes equa-
tions is due to Beam-Warming. The basic Beam-Warming algorithm is first- or second-order accurate
in time and second- or fourth-order accurate in space. The equations are approximately factored (spa-
tially split) which, for a given time iteration, reduces the process to three one-dimensional problems.
Due to the second-order central-difference operators employed, the algorithm produces block tridiag-
onal systems for each spatial dimension. The stability and accuracy of the numerical algorithm is
described by Beam and Warming (ref. 40). According to the linear analysis, the numerical scheme is
unconditionally stable in two dimensions but in actual practice time step limits are encountered because
of the nonlinear nature of the equations. However, this limitation is much less stringent than compa-
rable explicit schemes. In three dimensions the algorithm is unconditionally unstable, but stability is
maintained by the addition of artificial dissipation terms.

The finite-difference algorithm due to Beam and Warming applied to equation A-11 results in the
following approximate factorization:

’ An 2 7. 2

(I + hégA™ + DENYT + 06, B™ + DY)

«(I + hocC" — hRe™'8.J" A" + DY) AQ™ = R™ (B-1)
= —AT(éfEn + (Sn}:—‘n + 5CG’” — Re—lécgn) _ D(Ll)Q’n

where § is the central-difference operator and /A and V are forward and backward-difference operators.

c.g..
bQ = [QUE+AEN.0) — Qe — DEM()]/20
VeQ = [Q(E1.¢) — Q€ —ALEm.Q)]/AE
Indices denoting spatial location are suppressed and h = A7 corresponds to first-order time-

- : . 2 2
accurate Euler Implicit and i = A7/2 to second-order time-accurate Trapezoidal Rule. Dé ).Dg, ),

12) . Lo 1) . .. . . . . .
and D are the implicit and D,™ is the explicit smoothing operator which are given in detail in
S
reference 43.
The Jacobian matrices A7, B". and C™ are obtained by linearizing the flux vectors E™. F", and G"

in time such that
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En—a\—l — En + An(Qn-H _ Qn) +
Fn—H — Fn + Bn(Qn+J _ Qn) - O(ATZ) (B _ 3)
Gn-H — Gvn + Cwn(Qn-H _ Qn) +
where indices denoting spatial location are suppressed again and
. O0E . 9F . 0G
.42‘—,, B:—,, C:‘—A (B—4)
oQ oQ oQ
are the flux Jacobian matrices. These flux Jacobians and the viscous coefficient matrix M. which comes
from the time linearization of the viscous vector S"*!, are documented in reference 43.

Block tridiagonal-matrix inversions constitute the major portion of numerical work associated with
the standard Beam-Warming algorithm. Equations A-6 are a coupled set of five equations and thereby
produce a (5 x 5) block-tridiagonal structure for the implicit operators of equations B-1. The diagonal
version of the standard algorithm due to Pulliam and Chaussee (ref. 41) overcomes this difficulty. In
this algorithm, rather than inverting block-tridiagonal matrices in each direction, scalar pentadiagonal
matrices are inverted. This is computationally more efficient.

The Jacobian matrices. A, B, and C have a set of eigenvalues and a complete set of distinct
eigenvectors. Similarity transformations can be used to diagonalize A, B. and C,

A=TAJIT. B=TAT'. C=TAI;! (B —5)
where
Ae = DIUUUU +e(g2+&+ )20 ~ o2+ €2 + €3V
Ay = DV.VV.V+cml+nl +n) 2V = c(n +n2 + n2)V?] (B-6)
Ac = DWW W.W +c(C+ G+ VW oG+ 2+ DV

where c is the speed of sound (c® = vp/p). and for example f\g reads as

U o o 0 0
0 U 0 0 0

Ae=|0 0 U 0 0 (B-7)
0 0 0 U+c(€+&+H? 0
0 0 0 0 U=l + €2+ )12

The similarity transformation matrices 7¢, T3, T and their inverse matrices are given in reference 43.
Relations exist between 7¢, T;,. and I of the form

N=T'T,, N'=1;'T,, P=T;'T.. P'=1I7'T, (B —8)

where
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my ma m3 — My LIy

—m2 my my ums —Hm3

Tk_lTl =| —ms —my my —pma LMo (B-9)
pms  —pms pma pr(l+my) (1 —my)
—pmd  pmsz  —pme  p?(1—my) p2(1 4+ my)

my = kot Byl Rl ma = ol — el

ma = kply — kyls, my = kyl: — k:ly, = 1/\/§

After applying the similarity transformations of equation B-5 and identities given in equation B-8 into
equation B-1 and exchanging the smoothing operators with new ones, the diagonal form of the standard
algorithm reads

Tell + héeAe — hDile) N(I + héyAy — RDilg) P(I + hécAg — hD| )T AQ™ = R (B - 10)

The spatial accuracy of the standard and diagonalized algorithms for steady-state problems (i.e..
AQ" — 0 as n — oc) is determined by the type of differencing in forming R™. Since the modlﬁcatlon
that produces the diagonal algorithm does not effect R™, both schemes will have the same steady-
state solution assuming that the steady-state solution is independent of the convergence path; i.e., that
the steady state is unique. For unsteady simulations, care must be exercised in ensuring small enough
time-step sizes for accuracy. When the diagonalized algorithm is used, the author strongly recommends
time-step refinement studies to evaluate tempOral accuracy of the unsteady simulations.

For constant coefficient matrices A, B, and C, the diagonal algorithm reduces to the standard
algorithm because the eigenvector matrices are also constant. Therefore, the linear stability analysis
of Beam and Warming also holds for the diagonal algorithm.
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Appendix C
Turbulence Modeling

The apparent turbulent stresses in compressible flow can be written as
(Tij Jturd = —pu;u} (C-1)

and the apparent turbulent heat flux components as

0 —
"(v ) q)turb = _8_1‘]_(pcpT uj) (C - 2)

In order to predict turbulent flows by applying finite-difference methods to the Reynolds equations,
it is necessary to make assumptions for the terms in equations C-1 and C-2. Boussinesq (1877) suggested
that the apparent shearing stresses might be related to the rate of mean strain through an apparent
turbulent or “eddy” viscosity given in incompressible flow by

(C-3)

— du; D
g = g (L 9
pultl; = pur ( o o)

Closure for the Revnolds heat flux-term. pc,T"u; is treated in algebraic models by a form of Reynolds
analogy. The Reynolds analogy is based on the similarity between the transport of heat and momentum
and applied to the apparent turbulent conductivity in the assumed Boussinesq form
= aT
STy, = —kp— C—-4
pepd Uy T Dz ( )
Experiments reveal that the ratio of the diffusivities for the turbulent transport of heat and momentum
which is called the turbulent Prandtl number, Pry = prcp/kr. is 2 well-behaved function across the
flow and in algebraic models is generally taken to be 0.9. Using the turbulent Prandtl number. the
turbulent heat flux is related to the turbulent viscosity and mean flow variables as

_ cpr OT (C—5)

—pe. Ty = PEL
pept iy Prr 0z,

In the Baldwin-Lomax model the effects of turbulence are simulated by replacing the molecular
coefficient of viscosity pa; with the effective viscosity uar + pr in the stress terms of the laminar
Navier-Stokes equations. In heat flux terms k/c, = pu/Pr is replaced by w/Pr+ pr/Prr.

The Baldwin-Lomax model is a two-layer algebraic model in which p7 is given by

ur = { (HT)?:TITLCT‘, Y < Yerossover (C —6)
(/—LT)outerv Y 2 Yerossover

where y is the normal distance from the wall and Yerossover 1 the smallest value of y at which values

from the inner and outer formulas are equal. The eddy viscosity coefficient in the inner layer is based
on the Prandtl mixing-length theory

2 ~

(T )inner = p£ |w] (C-7)

The parameter ¢ is the mixing length corrected with the Van Driest damping factor to account for the

laminar sublayer
(= ky[i - exp(—y* /A7) (C-8)
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where & = 0.4, A™ = 26, and |w| is the magnitude of the vorticity given by

lw| = \/(U!/ - 'l’r)g + (v: — wy)2 + (wy — u:)z (C-9)
and
+ yUr vV PuwTw!
M M

The eddy viscosity coefficient in the outer layer is based on the distribution of vorticity which is used
to determine the length scale and is given by

(11 )outer = K Cop p FwakeFkrEB(Y) (C-11)

where K = 0.0168 is the Clauser constant and Ccp = 1.6 is an additional constant. Fyy 45 is found
via
ymarFmaI
Fywapp = min or (C—-12)
Cwi ymalugD]F/Fmar

where Cy i = 0.25 and
uprr = (VU2 + 02 + w?)mer — (VU2 + 02 + w?) min (C—13)

In equation C-13 the second term is taken to be zero (except in wakes). The quantities ymar and Finax
are determined from the function

Fly) =ylwl|l —exp(—y™*/AT)] (C-14)

In wakes the exponential term is set equal to zero. The quantity F,, is the maximum value of F(y)
that occurs in the profile and yp,qr is the value of y at which F,,4, occurs. The function Figpg is the
Klebanoff intermittency factor given by

-1
Frienly) = [1 + 5.5(-——~C"’LEB?J)6} (C — 15)
YMAX
and Cxrep = 0.3.
Although not seen explicitly. the Reynolds number enters into the computation of eddy viscosity
through the computation of y©. When the variables in equation C-10 are nondimensionalized. the
following expression is obtained:

Re py 7o - ,
y*=\——£‘ J (C —16)

In high Reynolds number flows, as Re — oo, the length scales { and F(y) in the inner and outer

layers go to zero, which result in vanishing values of u7. For more discussion on the Baldwin-Lomax
turbulence model. the reader is referred to the original paper (ref. 44).
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